On Sunday, April 20th 2025, starting 8:30am GMT, there will be maintenance work that will involve the website being unavailable during parts of the day. We apologize for any inconvenience this may cause and appreciate your understanding.
We noted you are experiencing viewing problems
-
Check with your IT department that JWPlatform, JWPlayer and Amazon AWS & CloudFront are not being blocked by your network. The relevant domains are *.jwplatform.com, *.jwpsrv.com, *.jwpcdn.com, jwpltx.com, jwpsrv.a.ssl.fastly.net, *.amazonaws.com and *.cloudfront.net. The relevant ports are 80 and 443.
-
Check the following talk links to see which ones work correctly:
Auto Mode
HTTP Progressive Download Send us your results from the above test links at access@hstalks.com and we will contact you with further advice on troubleshooting your viewing problems. -
No luck yet? More tips for troubleshooting viewing issues
-
Contact HST Support access@hstalks.com
-
Please review our troubleshooting guide for tips and advice on resolving your viewing problems.
-
For additional help, please don't hesitate to contact HST support access@hstalks.com
We hope you have enjoyed this limited-length demo
This is a limited length demo talk; you may
login or
review methods of
obtaining more access.
Printable Handouts
Navigable Slide Index
- Introduction
- B cell functions
- B cell receptor genes
- Antibody isotypes
- B cell development
- B cell subsets: ontogeny
- Positive and negative selection of B cells
- Studying antigen specific B cells
- B cell tolerance in pre-immune repertoire
- B cell signaling sets the threshold
- The response to foreign antigen
- B cell activation
- The germinal centre
- Maximising the B cell response
- When it goes wrong
- Thank you
Topics Covered
- B cell function
- B cell receptor genes
- B cell development and subsets
- Studying B cell interactions with self or foreign antigen
- Maximising the B cell response
- B cell-related pathologies
Links
Series:
Categories:
Therapeutic Areas:
Talk Citation
Cornall, R. (2020, September 30). B cell biology [Video file]. In The Biomedical & Life Sciences Collection, Henry Stewart Talks. Retrieved April 15, 2025, from https://doi.org/10.69645/JMKV2523.Export Citation (RIS)
Publication History
- Published on September 30, 2020
Financial Disclosures
- Prof. Richard Cornall has not informed HSTalks of any commercial/financial relationship that it is appropriate to disclose.
Other Talks in the Series: The Immune System - Key Concepts and Questions
Transcript
Please wait while the transcript is being prepared...
0:00
Hello. I'm Richard Cornall.
I'm the Nuffield Professor of Clinical Medicine at the University of Oxford,
and I'm going to talk to you today about B-cell biology.
0:11
A good place to start is an overview of the function of B-cells,
which are called B-cells because they were discovered in
the bursa of Fabricius in poultry.
B-cells are characterised,
of course, by a B-cell receptor,
which doesn't itself signal but is associated with
Ig-alpha and -beta chains which contain immunoreceptor tyrosine-based activation motifs,
also known as ITAMs.
I'm not going to discuss the actual signaling mechanisms in detail here today.
The mode of B-cell activation is actually quite controversial,
at least in vitro activation is by
cross-linking and increasing the density of kinases relative to phosphatases.
But in vivo, most B-cells, it's now
appreciated, encounter antigen probably on the surface of other cells,
and how that operates at low density is not entirely known.
We look at the individual functions of B-cells.
The most well known is,
of course, antibody secretion,
and this arises through B-cells being activated and then differentiating into
plasma cells which secrete antibody
either on the short-term or over long-term in the bone marrow.
The second function of B-cells is to bind
antigen through the B-cell receptor and present them
on MHC class II receptors to activate the T-cell and obtain T-cell help.
Third function, which has been appreciated more recently is to transport antigen
within lymph nodes and the spleen particularly notably on complement receptors.
The fourth function of B-cells is to secrete cytokines.
In particular, some B-cells secrete IL-10,
and these cells are defined by some groups as being regulatory B-cells.
But unlike regulatory T-cells,
there's no transcription factor that has been
identified to define them as a unique subset.
These functions may be overlapping with other activatory functions of
B-cells and the plasticity of the B-cell subsets is not as yet clearly defined.