Please wait while the transcript is being prepared...
0:00
Hi, my name is Marcelo Calderon.
I'm Professor for Organic and
Macromolecular Chemistry at the Freie Universität Berlin in Germany,
and I'm an Ikerbasque Research Professor in Polymers
for Biomedicine in POLYMAT, San Sebastian, Spain.
Today, we'll be talking to you about polymers
as nanocarriers for controlled drug delivery.
0:19
As an outline, I would like to go over the topics from today's talk.
First, we will get started with the definition of polymers and their use as nanocarriers.
Later, we will move to discuss the mechanisms
that it could be used for drug delivery using polymers,
which kind of triggers could we use for
controlling the drug delivery at the site of action.
Moreover, we will discuss how
the different properties of
the polymeric nanocarriers could influence their biological fate,
and we will finalize our presentation from today by discussing
some examples regarding the development
of polymer-drug conjugates for anticancer therapy,
the development of thermoresponsive nanogels for topical drug delivery,
and moreover, the use of polymeric nanoparticles for hair follicle penetration.
At the end, we will close the talk with a summary.
1:09
So the first question we have for today is what are polymers.
So, polymers, as has been defined by
the International Union of Pure and Applied Chemistry,
are substances compose of macromolecules.
They're very large, with high molecular weights ranging
from few thousands to as high as millions of gram per mole.
The IUPAC defined polymers as molecules of high relative molecular mass.
Their structure is essentially comprised by a multiple repetition of units
derived mostly by molecules from relatively low molecular mass.
There are different kind of polymers.
There are natural polymers and synthetic polymers.
And, for sure, you know already some of natural polymers.
There are proteins, starch, cellulose, and DNA.
And from synthetic polymers, for sure,
you know some of them that you may use when you go to supermarket.
Like, for instance, nylon,
polyethylene, and many others.
So now, the question we have for today's discussion
is how these polymers can be used for controlled drug delivery.