Registration for a live webinar on 'Innovations in antibiotic discovery: combating resistant infections' is now open.
See webinar detailsWe noted you are experiencing viewing problems
-
Check with your IT department that JWPlatform, JWPlayer and Amazon AWS & CloudFront are not being blocked by your network. The relevant domains are *.jwplatform.com, *.jwpsrv.com, *.jwpcdn.com, jwpltx.com, jwpsrv.a.ssl.fastly.net, *.amazonaws.com and *.cloudfront.net. The relevant ports are 80 and 443.
-
Check the following talk links to see which ones work correctly:
Auto Mode
HTTP Progressive Download Send us your results from the above test links at access@hstalks.com and we will contact you with further advice on troubleshooting your viewing problems. -
No luck yet? More tips for troubleshooting viewing issues
-
Contact HST Support access@hstalks.com
-
Please review our troubleshooting guide for tips and advice on resolving your viewing problems.
-
For additional help, please don't hesitate to contact HST support access@hstalks.com
We hope you have enjoyed this limited-length demo
This is a limited length demo talk; you may
login or
review methods of
obtaining more access.
- Introduction
-
1. Editor's foreword
- Prof. Ann Daly
-
2. Introduction to drug metabolism enzymes
- Dr. Dennis Smith
- General factors affecting drug metabolism
-
3. General factors affecting drug metabolism: effect of physiological factors and disease 1
- Prof. Edward T. Morgan
-
4. General factors affecting drug metabolism: effect of physiological factors and disease 2
- Prof. Edward T. Morgan
-
5. Drug metabolism in liver disease
- Dr. Nathalie Zgheib
- Prof. Robert Branch
-
7. Prediction of pathways of drug metabolism
- Dr. Maurice Dickins
- Phase I metabolizing enzymes: cytochrome P450s
-
8. Cytochrome P450 1 family: the roles of 1A1, 1A2 and 1B1 in drug metabolism
- Prof. F. Peter Guengerich
-
9. CYP2 family
- Prof. Ann Daly
-
10. Why study the cytochrome P4503A (CYP3A) family?
- Dr. Erin Schuetz
-
11. Pharmacogenomics: an update
- Prof. Magnus Ingelman-Sundberg
- Phase I metabolizing enzymes: non-cytochrome P450s
-
12. Non-P450 oxidative metabolism: characteristics and drug substrates
- Dr. Christine Beedham
-
13. UDP-glucuronosyltransferases
- Prof. Abby Collier
- Phase II metabolizing enzymes: conjugating enzymes
-
14. Glutathione transferases
- Prof. Ralf Morgenstern
-
15. Arylamine N-acetyltransferases 1
- Prof. Edith Sim
-
16. Arylamine N-acetyltransferases 2
- Prof. Edith Sim
-
17. Arylamine N-acetyltransferases 3
- Prof. Edith Sim
-
18. Methyltransferases
- Prof. Richard Weinshilboum
-
19. Amino acid conjugation: mechanism and enzymology
- Dr. Kathleen Knights
- Clinical aspects
-
20. Clinical significance of enzyme induction and inhibition
- Prof. Kim Brøsen
-
21. Clinical importance of pharmacogenetic polymorphisms affecting drug metabolism
- Prof. Julia Stingl (formerly Kirchheiner)
- Latest Updates in the Field
-
22. Mammalian flavin-containing monooxygenases
- Prof. Allan Rettie
- Archived Lectures *These may not cover the latest advances in the field
-
23. Glucuronidation and the UDP - glucuronosyltransferases
- Prof. Peter Mackenzie
- Prof. John Miners
-
25. Catalytic cycle of cytochrome P450s
- Prof. Gordon Roberts
-
26. Drug metabolism and liver disease
- Prof. Robert Branch
-
27. Crystal structures of drug-metabolizing P450 monooxygenases
- Prof. Eric Johnson
-
28. Sulfation and human cytosolic sulfotransferases
- Prof. Charles Falany
-
29. Laboratory methods for the in vitro study of drug metabolism
- Dr. Charles Crespi
-
30. Clinical importance of pharmacogenetic polymorphisms affecting drug metabolism: psychopharmacology and pain
- Prof. Julia Stingl (formerly Kirchheiner)
-
32. Pharmacogenomics
- Prof. Magnus Ingelman-Sundberg
Printable Handouts
Navigable Slide Index
- P450s catalytic cycle
- Reaction catalyzed by P450
- Catalytic cycle - reviews
- The catalytic cycle
- Catalytic cycle - side reactions
- Substrate binding
- Substrate binding to CYP BM3
- Substrate binding to CYP2C9
- Oxygen cleavage & substrate hyd.
- Catalytic cycle - electron transfer
- Electron sources
- P450 monooxygenase in the ER
- NADPH-P450 reductase (CPR)
- CPR - cofactors
- CPR - kinetics & thermodynamics
- Interflavin electron transfer - T-jump
- Interflavin electron transfer - rates
- Electron transfer viscosity effect
- CPR - domain motion
- Coenzyme effects on domain motion
- Cytochrome b5
- b5 and P450s
- b5 - electron transfer
- b5 - allosteric effects & summary
- Acknowledgements
Topics Covered
- Catalytic cycle of cytochrome P450s
- Substrate and oxygen binding
- Key electron and proton transfers
- Dioxygen cleavage
- Formation of the 'activated oxygen' hydroxylating species
- Structure and electron transfer properties of NADPH-cytochrome P450 reductase
- Possible roles of cytochrome b5 in the p450 monooxygenase system
Links
Series:
Categories:
Therapeutic Areas:
Talk Citation
Roberts, G. (2007, October 1). Catalytic cycle of cytochrome P450s [Video file]. In The Biomedical & Life Sciences Collection, Henry Stewart Talks. Retrieved May 13, 2025, from https://doi.org/10.69645/GAJE7118.Export Citation (RIS)
Publication History
Financial Disclosures
- Prof. Gordon Roberts has not informed HSTalks of any commercial/financial relationship that it is appropriate to disclose.