We noted you are experiencing viewing problems
-
Check with your IT department that JWPlatform, JWPlayer and Amazon AWS & CloudFront are not being blocked by your network. The relevant domains are *.jwplatform.com, *.jwpsrv.com, *.jwpcdn.com, jwpltx.com, jwpsrv.a.ssl.fastly.net, *.amazonaws.com and *.cloudfront.net. The relevant ports are 80 and 443.
-
Check the following talk links to see which ones work correctly:
Auto Mode
HTTP Progressive Download Send us your results from the above test links at access@hstalks.com and we will contact you with further advice on troubleshooting your viewing problems. -
No luck yet? More tips for troubleshooting viewing issues
-
Contact HST Support access@hstalks.com
-
Please review our troubleshooting guide for tips and advice on resolving your viewing problems.
-
For additional help, please don't hesitate to contact HST support access@hstalks.com
We hope you have enjoyed this limited-length demo
This is a limited length demo talk; you may
login or
review methods of
obtaining more access.
- Fundamental aspects
-
1. Inflammation and tissue homeostasis
- Prof. Herman Waldmann
-
2. Introduction to the immune system
- Prof. Herman Waldmann
-
3. Hematopoiesis: the making of an immune system
- Prof. Paul J. Fairchild
-
4. Inflammation: purposes, mechanisms and development
- Prof. Pietro Ghezzi
-
5. Phagocytosis
- Dr. Eileen Uribe-Querol
-
6. Regulated cell death mechanisms and their crosstalk with the immune system 1
- Dr. Luis Alberto Baena-Lopez
-
7. Regulated cell death mechanisms and their crosstalk with the immune system 2
- Dr. Luis Alberto Baena-Lopez
- Innate immunity
-
11. Cells of the innate immune system
- Prof. Kevin Maloy
-
12. Microbial recognition and the immune response
- Dr. Dana Philpott
-
13. Toll-like receptor signalling during infection and inflammation
- Prof. Luke O'Neill
- Intercellular mediators
-
14. Chemokines
- Dr. James E. Pease
-
15. Cytokines
- Prof. Iain McInnes
-
16. IL-1 family cytokines as the canonical DAMPs of the immune system
- Prof. Seamus Martin
-
17. Glycans at the frontiers of inflammation, autoimmunity and cancer
- Prof. Salomé S. Pinho
-
18. Glycoimmunology
- Prof. Paula Videira
- Adaptive immunity B cells
-
21. Antigen recognition in the immune system
- Prof. Herman Waldmann
-
22. B cell biology
- Prof. Richard Cornall
-
23. Antibody structure and function: antibody structure
- Dr. Mike Clark
-
24. Antibody structure and function: antibody function
- Dr. Mike Clark
-
25. Antibody genes and diversity
- Dr. Mike Clark
-
26. In vivo antibody discovery and hybridoma technology
- Prof. Dr. Katja Hanack
-
27. Antibody engineering: beginnings to bispecifics and beyond
- Dr. Ian Wilkinson
-
29. The immunobiology of Fc receptors
- Prof. Mark Cragg
-
30. Immunoreceptors
- Prof. Anton van der Merwe
-
31. Affinity, avidity and kinetics in immune recognition
- Prof. Anton van der Merwe
- Adaptive immunity T cells
-
32. The thymus and T cell development: a primer
- Prof. Georg Holländer
-
33. Lineage decisions in the thymus: T cell lineage commitment
- Prof. Bruno Silva-Santos
-
34. Lineage decisions in the thymus: αβ and γδ T cell lineages
- Prof. Bruno Silva-Santos
-
35. CD4 T cell subsets
- Dr. Brigitta Stockinger
-
36. Cytotoxic T lymphocytes
- Prof. Gillian M. Griffiths
-
37. Gamma delta T-cells
- Prof. Bruno Silva-Santos
-
38. Tfh and Tfr cells
- Prof. Luis Graca
-
39. Tissue resident memory T cells (TRM)
- Dr. Marc Veldhoen
-
40. Mathematical modeling in immunology
- Prof. Ruy M. Ribeiro
- The importance of the MHC in immunity
-
41. The MHC and MHC molecules 1
- Prof. Jim Kaufman
-
42. The MHC and MHC molecules 2
- Prof. Jim Kaufman
-
43. Natural killer cells
- Dr. Philippa Kennedy
-
44. Human NK cells
- Prof. Lorenzo Moretta
-
46. NK cells in viral immunity
- Prof. Lewis Lanier
- Lymphocyte activation
-
47. Signal transduction by leukocyte receptors
- Dr. Omer Dushek
-
48. Immunological memory 1
- Prof. David Gray
-
49. Immunological memory 2
- Prof. David Gray
-
50. Studying immune responses “one cell at a time”
- Dr. Mir-Farzin Mashreghi
- Major cellular partners in immunity
-
51. The mononuclear phagocyte system - tissue resident macrophages: distribution and functions
- Prof. Emeritus Siamon Gordon
-
52. The mononuclear phagocyte system: tissue resident macrophages - activation and regulation
- Prof. Emeritus Siamon Gordon
-
53. Dendritic cells: professional antigen presenting cells
- Prof. Paul J. Fairchild
-
54. Mucosal immunology
- Prof. Daniel Mucida
- Immunological tolerance and regulation
-
55. Self-tolerance
- Prof. Herman Waldmann
-
56. Tolerance and autoimmunity
- Prof. Emerita Anne Cooke
-
57. The balance between intestinal immune homeostasis and inflammation
- Prof. Dr. Janneke Samsom
- Translational immunology - immune deficiency
-
58. Primary immunodeficiency disorders
- Dr. Smita Y. Patel
-
59. Changes in innate and adaptive immunity during human ageing 1
- Dr. Roel De Maeyer
-
60. Changes in innate and adaptive immunity during human ageing 2
- Dr. Roel De Maeyer
-
61. The aging immune system
- Prof. Ana Caetano
- Translational immunology - protection against pathogenic microbes
-
62. Immune responses to viruses
- Prof. Paul Klenerman
-
63. HIV and the immune system
- Prof. Quentin Sattentau
-
64. COVID-19: the anti-viral immune response
- Prof. Danny Altmann
-
65. Bacterial immune evasion
- Prof. Christoph Tang
-
66. The immunology underlying tuberculosis
- Prof. Thomas R. Hawn
-
67. Innate immunity to fungi
- Prof. Gordon D. Brown
-
68. Parasite immunity: introduction and Plasmodium
- Dr. Catarina Gadelha
-
69. Parasite immunity: Leishmania and Schistosoma
- Dr. Catarina Gadelha
-
70. Vaccination
- Dr. Anita Milicic
-
71. The history of vaccines 1
- Prof. Emeritus Anthony R. Rees
-
72. The history of vaccines 2
- Prof. Emeritus Anthony R. Rees
-
73. The history of vaccines 3
- Prof. Emeritus Anthony R. Rees
-
74. The science of vaccine adjuvants
- Dr. Derek O'Hagan
- Translational immunology - hypersensitivity, autoimmune disease and their management
-
75. Hypersensitivity diseases: type 1 hypersensitivity
- Prof. Herman Waldmann
-
76. Innate lymphoid cells in allergy
- Prof. Emeritus Shigeo Koyasu
-
77. Hypersensitivity diseases: type II-IV hypersensitivity
- Prof. Sara Marshall
-
78. Immune memory underlying lifelong peanut allergy
- Dr. Kelly Bruton
-
79. Memory B cells in allergy: B cell activation and response
- Dr. Kelly Bruton
-
80. Memory B cells in allergy: ontogeny, phenotype and plasticity
- Dr. Kelly Bruton
-
81. B cells at the crossroads of autoimmune diseases
- Dr. Xiang Lin
-
82. Interleukin-17: from clone to clinic
- Prof. Leonie Taams
-
83. Autoimmunity and type 1 diabetes
- Prof. Emerita Anne Cooke
-
84. What is new in type 1 diabetes?
- Prof. Åke Lernmark
-
85. Antibodies to control or prevent type 1 diabetes
- Dr. Robert Hilbrands
-
86. Monoclonal antibodies in haemato-oncology
- Prof. Mark Cragg
-
87. Therapeutic antibodies
- Dr. Geoffrey Hale
-
88. Endothelial cells: regulators of autoimmune-neuroinflammation
- Dr. Laure Garnier
-
89. Neuroimmunometabolism
- Prof. Ana Domingos
-
90. The immunology of multiple sclerosis
- Dr. Joanne Jones
-
91. Immunology of the peripheral nervous system: the inflammatory neuropathies
- Dr. Simon Rinaldi
-
92. Ocular immunology: an overview of immune mechanisms operating in the eye
- Dr. Eleftherios Agorogiannis
-
93. Understanding myasthenia gravis and advances in its management
- Prof. Henry J. Kaminski
-
94. The immunology underlying rheumatic diseases
- Dr. Hussein Al-Mossawi
-
96. Complement and lupus
- Prof. Marina Botto
-
97. Immune mechanisms in liver diseases
- Prof. Paul Klenerman
- Translational immunology - transplantation immunology
-
98. Principles of transplantation: overview of the immune response
- Prof. Emerita Kathryn Wood
-
99. Factors influencing outcomes in clinical transplantation 1
- Prof. Emerita Kathryn Wood
-
100. Factors influencing outcomes in clinical transplantation 2
- Prof. Emerita Kathryn Wood
- Translational immunology - cancer immunology
-
101. Cancer immunology
- Prof. Tim Elliott
-
102. Cancer immunotherapy
- Prof. Tim Elliott
-
103. Myeloid-derived suppressor cells in cancer
- Prof. Dmitry Gabrilovich
-
104. IL-2 in the immunotherapy of autoimmunity and cancer
- Prof. Thomas Malek
-
105. Latest advances in the development of CAR & TCR T-cell treatments for solid tumours
- Dr. Else Marit Inderberg
Printable Handouts
Navigable Slide Index
- Introduction
- Contents
- Innate Lymphoid Cells (ILCs)
- Cytokine producing lymphocytes
- Differentiation pathways of ILCs
- ILC classification
- Allergic diseases and ILCs
- Helminth infection and allergic inflammation
- Adaptive immunity against helminths and allergens
- Identification of ILC2
- IL-33 and IL2 + IL-25
- Epithelial cell-derived IL-33 and IL-25 (1)
- Epithelial cell-derived IL-33 and IL-25 (2)
- Innate immunity against helminths and allergens
- Role of ILC2 in allergic diseases
- Lung inflammation by papain
- Papain treatment
- Intratracheal administration of IL-33 or IL-2 + IL-25 induces eosinophilia in the lung
- Lung eosinophilia
- ILC2 are tissue-resident cells
- TSLP-STAT5 axis in corticosteroid sensitivity of ILC2 cells
- Steroid-resistant severe asthma and ILC2
- Dexamethasone suppresses IL-33-induced inflammation in the lung
- Dexamethasone suppresses OVA-induced inflammation in the lung
- Dexamethasone is unable to suppresses OVA-induced inflammation in the presence of IL-33
- Difference in the sensitivity between T cells and ILC2 cells
- Dexamethasone suppresses the proliferation of ILC2 and induces apoptosis of ILC2 in vitro
- IL-2, IL-7 and TSLP antagonize corticosteroid sensitivity of ILC2
- TSLP antagonizes the effect of corticosteroid on NH (ILC2) cells
- Neutralization of TSLP antagonizes corticosteroid resistance in vivo
- STAT5 inhibitors suppress the effect of TSLP
- STAT5 inhibitors restore corticosteroid sensitivity
- Role of ILC2: summary
- Clinical significance of TSLP
- How is the type 2 inflammatory response terminated?
- IFNs strongly suppress proliferation of ILC2
- IFNs strongly suppress cytokine production by ILC2
- IFNγ suppresses airway hyperreactivity
- IFNγ suppresses ILC2 activation during inflammation
- Mechanisms
- Interferon-γ and IL-27
- A cytokine-mediated balance of ILC functions
- Factors affecting ILC2 functions
- Clinical significance of interferons
- Clinical significance of type 1 cytokines
- Role of other ILCs in allergic diseases
- Conclusion
- Thank you for your attention!
Topics Covered
- Innate Lymphoid Cells (ILCs)
- Allergy and ILCs
- Type 1 and 2 cytokine responses
- Innate and adaptive immunity
- Asthma
- Lung eosinophilia
- Mucus secretion
- Helminth infection and allergic inflammation
- Epithelial cell-derived IL-33 and IL-25
- Lung inflammation by papain
- TSLP-STAT5 axis
- Corticosteroid sensitivity
- Interferons (IFNs) and ILCs
Links
Series:
Categories:
Therapeutic Areas:
Talk Citation
Koyasu, S. (2024, February 29). Innate lymphoid cells in allergy [Video file]. In The Biomedical & Life Sciences Collection, Henry Stewart Talks. Retrieved February 5, 2025, from https://doi.org/10.69645/KQIJ2045.Export Citation (RIS)
Publication History
Financial Disclosures
- Prof. Emeritus Shigeo Koyasu has not informed HSTalks of any commercial/financial relationship that it is appropriate to disclose.
A selection of talks on Immunology & Inflammation
Transcript
Please wait while the transcript is being prepared...
0:00
Hello, my name is Shigeo
Koyasu from Keio University.
I'll talk about the
innate lymphoid cells
in allergic diseases.
0:10
So, the contents
are in five rows.
I'll start with what innate
lymphoid cells (ILCs) are and
then an overview about the
allergic diseases and ILCs.
Then, I'll talk
about the role of
ILC2 in allergic diseases
with our own data.
I'll briefly mention about
the role of other ILCs
in allergic diseases and
then, I'll conclude my talk.
0:36
So, what are ILCs?
ILCs are lymphocytes without
Rag-dependent rearranged
antigen receptors.
So, they don't have
any antigen receptors.
The first innate lymphoid
cells discovered
was natural killer (NK) cells
that were found in 1975,
and the next one was
lymphoid tissue inducer
(LTi) cells found in 1997,
which plays a role during
the fetal stages to
induce lymph nodes and
Peyer's patches, and so on.
Those are the so-called
first-generation
innate lymphoid cells,
1:16
but in 21st century,
we found three new types
of innate lymphoid cells.
We know that there are three
types of helper T-cells,
Th1, Th17,
and Th2 with T-cell receptors.
Th1 cells produce
interferon-gamma (IFNγ),
which act on macrophages (Mϕ)
and then act on fighting
against the intracellular
microbes and viruses.
Th17 cells produce IL-17 and
IL-22 which mostly act
on epithelial cells,
which plays an important
role for immunity against
fungi and Escherichia bacteria,
such as EHEC and ETEC.
Th2 cells producing
IL-5 and IL-13
induce eosinophilia and
goblet cell hyperplasia,
which play an important role
in immunity against helminth.
Those are in adaptive
immunity, but
during the innate immune
phase, as I said,
NK cells was found in 1975,
which are able to produce
IFNγ as Th1 cells.
Around 2008-2009, people
found LTi-like cells in
adult intestine which do
not have T-cell
receptors, but are
able to produce IL-17 and
IL-22 as Th-17 cells.
Next, innate lymphocytes
they found was
the T-bet^+ EOMES^-
innate lymphocytes,
which are able to produce IFNγ,
but possess very low
level of cytotoxicity.
So, therefore, we now know
that NK cells correspond to
CTL (cytotoxic lymphocytes) and
T-bet^+ EOMES^- cells
correspond to Th1 cells.
Lastly, natural helper
cells, which we named,
expressing GATA3 was discovered,
which again lack T-cell
receptors, but are
able to produce IL-5
and IL-13 as Th2 cells.
So, pros for those cells
are they actually play
an important role for immunity
against various
invading microbes,
fungi, and helminths,
but cons are they
induce various types of acute
and chronic inflammation.
In 2013, people working in
this field decided to
call γ producers as
Group 1 ILC or ILC1,
type 2 cytokine producing cells
Group 2 ILCs or ILC2,
and IL-17,
IL-22 producing cells as
Group 3 ILCs or ILC3.