We noted you are experiencing viewing problems
-
Check with your IT department that JWPlatform, JWPlayer and Amazon AWS & CloudFront are not being blocked by your network. The relevant domains are *.jwplatform.com, *.jwpsrv.com, *.jwpcdn.com, jwpltx.com, jwpsrv.a.ssl.fastly.net, *.amazonaws.com and *.cloudfront.net. The relevant ports are 80 and 443.
-
Check the following talk links to see which ones work correctly:
Auto Mode
HTTP Progressive Download Send us your results from the above test links at access@hstalks.com and we will contact you with further advice on troubleshooting your viewing problems. -
No luck yet? More tips for troubleshooting viewing issues
-
Contact HST Support access@hstalks.com
-
Please review our troubleshooting guide for tips and advice on resolving your viewing problems.
-
For additional help, please don't hesitate to contact HST support access@hstalks.com
We hope you have enjoyed this limited-length demo
This is a limited length demo talk; you may
login or
review methods of
obtaining more access.
- Fundamental aspects
-
1. Inflammation and tissue homeostasis
- Prof. Herman Waldmann
-
2. Introduction to the immune system
- Prof. Herman Waldmann
-
3. Hematopoiesis: the making of an immune system
- Prof. Paul J. Fairchild
-
4. Inflammation: purposes, mechanisms and development
- Prof. Pietro Ghezzi
-
5. Phagocytosis
- Dr. Eileen Uribe-Querol
-
6. Regulated cell death mechanisms and their crosstalk with the immune system 1
- Dr. Luis Alberto Baena-Lopez
-
7. Regulated cell death mechanisms and their crosstalk with the immune system 2
- Dr. Luis Alberto Baena-Lopez
- Innate immunity
-
11. Cells of the innate immune system
- Prof. Kevin Maloy
-
12. Microbial recognition and the immune response
- Dr. Dana Philpott
-
13. Toll-like receptor signalling during infection and inflammation
- Prof. Luke O'Neill
- Intercellular mediators
-
14. Chemokines
- Dr. James E. Pease
-
15. Cytokines
- Prof. Iain McInnes
-
16. IL-1 family cytokines as the canonical DAMPs of the immune system
- Prof. Seamus Martin
-
17. Glycans at the frontiers of inflammation, autoimmunity and cancer
- Prof. Salomé S. Pinho
-
18. Glycoimmunology
- Prof. Paula Videira
- Adaptive immunity B cells
-
21. Antigen recognition in the immune system
- Prof. Herman Waldmann
-
22. B cell biology
- Prof. Richard Cornall
-
23. Antibody structure and function: antibody structure
- Dr. Mike Clark
-
24. Antibody structure and function: antibody function
- Dr. Mike Clark
-
25. Antibody genes and diversity
- Dr. Mike Clark
-
26. In vivo antibody discovery and hybridoma technology
- Prof. Dr. Katja Hanack
-
27. Antibody engineering: beginnings to bispecifics and beyond
- Dr. Ian Wilkinson
-
29. The immunobiology of Fc receptors
- Prof. Mark Cragg
-
30. Immunoreceptors
- Prof. Anton van der Merwe
-
31. Affinity, avidity and kinetics in immune recognition
- Prof. Anton van der Merwe
- Adaptive immunity T cells
-
32. The thymus and T cell development: a primer
- Prof. Georg Holländer
-
33. Lineage decisions in the thymus: T cell lineage commitment
- Prof. Bruno Silva-Santos
-
34. Lineage decisions in the thymus: αβ and γδ T cell lineages
- Prof. Bruno Silva-Santos
-
35. CD4 T cell subsets
- Dr. Brigitta Stockinger
-
36. Cytotoxic T lymphocytes
- Prof. Gillian M. Griffiths
-
37. Gamma delta T-cells
- Prof. Bruno Silva-Santos
-
38. Tfh and Tfr cells
- Prof. Luis Graca
-
39. Tissue resident memory T cells (TRM)
- Dr. Marc Veldhoen
-
40. Mathematical modeling in immunology
- Prof. Ruy M. Ribeiro
- The importance of the MHC in immunity
-
41. The MHC and MHC molecules 1
- Prof. Jim Kaufman
-
42. The MHC and MHC molecules 2
- Prof. Jim Kaufman
-
43. Natural killer cells
- Dr. Philippa Kennedy
-
44. Human NK cells
- Prof. Lorenzo Moretta
-
46. NK cells in viral immunity
- Prof. Lewis Lanier
- Lymphocyte activation
-
47. Signal transduction by leukocyte receptors
- Dr. Omer Dushek
-
48. Immunological memory 1
- Prof. David Gray
-
49. Immunological memory 2
- Prof. David Gray
-
50. Studying immune responses “one cell at a time”
- Dr. Mir-Farzin Mashreghi
- Major cellular partners in immunity
-
51. The mononuclear phagocyte system - tissue resident macrophages: distribution and functions
- Prof. Emeritus Siamon Gordon
-
52. The mononuclear phagocyte system: tissue resident macrophages - activation and regulation
- Prof. Emeritus Siamon Gordon
-
53. Dendritic cells: professional antigen presenting cells
- Prof. Paul J. Fairchild
-
54. Mucosal immunology
- Prof. Daniel Mucida
- Immunological tolerance and regulation
-
55. Self-tolerance
- Prof. Herman Waldmann
-
56. Tolerance and autoimmunity
- Prof. Emerita Anne Cooke
-
57. The balance between intestinal immune homeostasis and inflammation
- Prof. Dr. Janneke Samsom
- Translational immunology - immune deficiency
-
58. Primary immunodeficiency disorders
- Dr. Smita Y. Patel
-
59. Changes in innate and adaptive immunity during human ageing 1
- Dr. Roel De Maeyer
-
60. Changes in innate and adaptive immunity during human ageing 2
- Dr. Roel De Maeyer
-
61. The aging immune system
- Prof. Ana Caetano
- Translational immunology - protection against pathogenic microbes
-
62. Immune responses to viruses
- Prof. Paul Klenerman
-
63. HIV and the immune system
- Prof. Quentin Sattentau
-
64. COVID-19: the anti-viral immune response
- Prof. Danny Altmann
-
65. Bacterial immune evasion
- Prof. Christoph Tang
-
66. The immunology underlying tuberculosis
- Prof. Thomas R. Hawn
-
67. Innate immunity to fungi
- Prof. Gordon D. Brown
-
68. Parasite immunity: introduction and Plasmodium
- Dr. Catarina Gadelha
-
69. Parasite immunity: Leishmania and Schistosoma
- Dr. Catarina Gadelha
-
70. Vaccination
- Dr. Anita Milicic
-
71. The history of vaccines 1
- Prof. Emeritus Anthony R. Rees
-
72. The history of vaccines 2
- Prof. Emeritus Anthony R. Rees
-
73. The history of vaccines 3
- Prof. Emeritus Anthony R. Rees
-
74. The science of vaccine adjuvants
- Dr. Derek O'Hagan
- Translational immunology - hypersensitivity, autoimmune disease and their management
-
75. Hypersensitivity diseases: type 1 hypersensitivity
- Prof. Herman Waldmann
-
76. Innate lymphoid cells in allergy
- Prof. Emeritus Shigeo Koyasu
-
77. Hypersensitivity diseases: type II-IV hypersensitivity
- Prof. Sara Marshall
-
78. Immune memory underlying lifelong peanut allergy
- Dr. Kelly Bruton
-
79. Memory B cells in allergy: B cell activation and response
- Dr. Kelly Bruton
-
80. Memory B cells in allergy: ontogeny, phenotype and plasticity
- Dr. Kelly Bruton
-
81. B cells at the crossroads of autoimmune diseases
- Dr. Xiang Lin
-
82. Interleukin-17: from clone to clinic
- Prof. Leonie Taams
-
83. Autoimmunity and type 1 diabetes
- Prof. Emerita Anne Cooke
-
84. What is new in type 1 diabetes?
- Prof. Åke Lernmark
-
85. Antibodies to control or prevent type 1 diabetes
- Dr. Robert Hilbrands
-
86. Monoclonal antibodies in haemato-oncology
- Prof. Mark Cragg
-
87. Therapeutic antibodies
- Dr. Geoffrey Hale
-
88. Endothelial cells: regulators of autoimmune-neuroinflammation
- Dr. Laure Garnier
-
89. Neuroimmunometabolism
- Prof. Ana Domingos
-
90. The immunology of multiple sclerosis
- Dr. Joanne Jones
-
91. Immunology of the peripheral nervous system: the inflammatory neuropathies
- Dr. Simon Rinaldi
-
92. Ocular immunology: an overview of immune mechanisms operating in the eye
- Dr. Eleftherios Agorogiannis
-
93. Understanding myasthenia gravis and advances in its management
- Prof. Henry J. Kaminski
-
94. The immunology underlying rheumatic diseases
- Dr. Hussein Al-Mossawi
-
96. Complement and lupus
- Prof. Marina Botto
-
97. Immune mechanisms in liver diseases
- Prof. Paul Klenerman
- Translational immunology - transplantation immunology
-
98. Principles of transplantation: overview of the immune response
- Prof. Emerita Kathryn Wood
-
99. Factors influencing outcomes in clinical transplantation 1
- Prof. Emerita Kathryn Wood
-
100. Factors influencing outcomes in clinical transplantation 2
- Prof. Emerita Kathryn Wood
- Translational immunology - cancer immunology
-
101. Cancer immunology
- Prof. Tim Elliott
-
102. Cancer immunotherapy
- Prof. Tim Elliott
-
103. Myeloid-derived suppressor cells in cancer
- Prof. Dmitry Gabrilovich
-
104. IL-2 in the immunotherapy of autoimmunity and cancer
- Prof. Thomas Malek
-
105. Latest advances in the development of CAR & TCR T-cell treatments for solid tumours
- Dr. Else Marit Inderberg
Printable Handouts
Navigable Slide Index
- Introduction
- Why do we have NK cells?
- Evidence that NK cells are important in viral immunity
- How do NK cells sense their environment?
- NK cell responses to “stressed cells”
- NK cell responses to virus-encoded ligands
- NK cell responses are controlled by a balance of inhibitory and activating receptors
- Some viruses down-regulate MHC class I to avoid CD8+ T cells - but makes NK cells more active
- NK cells are activated as bystanders in many viral infections
- NK cells limit T cell LCMV viral control at low-medium dose infection
- NK cells control replication of some viruses
- MCMV-resistance maps to the “NK complex”
- Ly49 (Klra) receptors
- Inhibitory and activating Ly49 receptors
- MCMV genome
- NK cells are able to control CMV
- Why did m157 evolve and why is it maintained?
- Ly49 (Klra) genes in different mouse strains
- m157 binds to inhibitory Ly49I129
- Virus-driven NK receptor evolution?
- Is Ly49H an exception?
- Ly49 genes in a variety of different strains of mice
- NK cell responses to “stressed cells”
- NKG2D and DAP10
- NKG2D can recognize a variety of different ligands
- Many viruses induce expression of NKG2D ligand genes
- Do NK cells have immunological memory?
- Expansion and contraction of Ly49H+ NK cells during MCMV infection
- Long-lived memory NK cells protect neonatal mice against MCMV infection
- NK cells in human viral immunity
- Inhibitory and activating CD94 receptors – conserved in humans and mice
- HCMV-seronegative have a unique population of CD57+NKG2C++ NK cells
- CD94-NKG2C+ NK cells are expanded in healthy CMV-seropositive humans
- NKG2C++ NK cells specifically expand after CMV reactivation
- NK cell memory to other viruses?
- Structural differences between MHC class I-specific receptors in mice and humans
- Inhibitory and activating KIR
- HLA specificities of human inhibitory KIRs
- KIR genes are highly polymorphic
- Killer cell immunoglobulin-like receptors
- Association of KIR genes with resistance to viral infections
- Thank you for listening
Topics Covered
- NK cell importance in viral immunity
- Protection against cytomegalovirus in mice and humans
- Receptor systems to counter cytomegalovirus infection
- Killer cell immunoglobulin-like receptors
- Different NK cell responses
Links
Series:
Categories:
Therapeutic Areas:
Talk Citation
Lanier, L. (2021, October 31). NK cells in viral immunity [Video file]. In The Biomedical & Life Sciences Collection, Henry Stewart Talks. Retrieved February 5, 2025, from https://doi.org/10.69645/PESP4959.Export Citation (RIS)
Publication History
Financial Disclosures
- There are no commercial/financial matters to disclose.
A selection of talks on Infectious Diseases
Transcript
Please wait while the transcript is being prepared...
0:00
Hello, my name's Lewis Lanier,
I'm Chair Professor of the Department of Microbiology and
Immunology at UCSF Medical School in San Francisco.
Today we're going to be talking about natural killer cells,
which is my favorite cell type that I've worked on for many years.
0:16
Why do we have NK cells?
Without them, you'd die of viral infections.
Natural killer cells were first discovered by their ability to kill cancer cells,
but in fact, I think the evolutionary drive was to protect you from viral infections.
It's good fortune that they use the same processes to kill cancers,
so we'll be talking about the ability of NK cells to
recognize virally infected cells, and to eliminate them, today.
0:44
The evidence that we have that NK cells are important
comes from experiments of nature, in which there are
rare human beings who have no natural killer cells.
These were discovered back in the 80s,
and these unfortunate people who had no natural killer cells,
although they had normal B- and T-cells,
in fact succumbed to certain viral infections.
The ones that seem to be most important are the herpesviruses.
On this slide you can see a variety of patient case reports,
showing that when you don't have NK cells
you can have severe Epstein-Barr virus (a herpesvirus), severe cytomegalovirus,
and also the other virus NK cells particularly care about is papillomavirus,
which causes warts and cervical cancer in women.
In fact, a few women who've had no natural killer cells have developed cervical cancer.
We also know that NK cells like to take care of viral infections by
experiments in mice, where many years ago it was shown that if you depleted NK cells,
again, NK cells had trouble eliminating certain viral infections.