We noted you are experiencing viewing problems
-
Check with your IT department that JWPlatform, JWPlayer and Amazon AWS & CloudFront are not being blocked by your network. The relevant domains are *.jwplatform.com, *.jwpsrv.com, *.jwpcdn.com, jwpltx.com, jwpsrv.a.ssl.fastly.net, *.amazonaws.com and *.cloudfront.net. The relevant ports are 80 and 443.
-
Check the following talk links to see which ones work correctly:
Auto Mode
HTTP Progressive Download Send us your results from the above test links at access@hstalks.com and we will contact you with further advice on troubleshooting your viewing problems. -
No luck yet? More tips for troubleshooting viewing issues
-
Contact HST Support access@hstalks.com
-
Please review our troubleshooting guide for tips and advice on resolving your viewing problems.
-
For additional help, please don't hesitate to contact HST support access@hstalks.com
We hope you have enjoyed this limited-length demo
This is a limited length demo talk; you may
login or
review methods of
obtaining more access.
- Cancer and Oncology
-
3. Latest advances in the development of CAR & TCR T-cell treatments for solid tumours
- Dr. Else Marit Inderberg
-
4. Mode of action of T cells engineered with CAR or TCR for cancer treatment
- Prof. Sebastian Kobold
-
5. Immunotherapy: insights from advanced disease
- Dr. Sara M. Tolaney
-
6. Recent advances in the field of non-coding RNAs in cancer
- Prof. George Calin
- Dr. Maitri Shah
-
7. How tumor-microenvironment interactions drive or inhibit metastasis
- Prof. Isaac P. Witz
-
8. A novel cancer therapy to stimulate oncogenic ERK signalling
- Prof. Reiko Sugiura
-
9. MRD-driven multiple myeloma treatment: next step forward
- Prof. Ola Landgren
-
11. Germinal centre lymphomas: advances in diagnostic and therapeutic intervention
- Dr. Koorosh Korfi
- Prof. Jude Fitzgibbon
-
12. Immunotherapy in lung cancer
- Dr. Mark M. Awad
-
13. Preservation of fertility in cancer patients: the impact of chemotherapy
- Prof. Kutluk H. Oktay
-
15. Solution proposed to a 2000 year old problem in oncology
- Dr. Michael Retsky
- Clinical Practice
-
16. Stillbirth: diagnosis, investigation and aftercare
- Prof. Alexander E. P. Heazell
-
17. Analyzing the medical relevance of skin care trends
- Prof. Zoe Draelos
-
18. Genetic counseling: preconception, prenatal, perinatal
- Prof. Aubrey Milunsky
-
19. The past, present & future of ANA testing: history and challenges of ANA
- Prof. Marvin J. Fritzler
-
20. The past, present & future of ANA testing: changing bandwidth and future of ANA
- Prof. Marvin J. Fritzler
-
22. Mitochondrial diseases: an update
- Dr. Ayesha Saleem
-
23. Hemophilia A
- Dr. Snejana Krassova
-
26. Recent advances in diagnosis and interventions in ophthalmology
- Dr. Rebecca Kaye
- Prof. Andrew Lotery
- Gastroenterology
-
27. Building implantable human liver tissue from pluripotent stem cells
- Prof. David C. Hay
-
28. Microbiome therapies to treat gastrointestinal diseases
- Dr. Patricia Bloom
-
29. Drug-induced liver injury: importance, epidemiology, and mechanisms of DILI
- Prof. James H. Lewis
-
30. Drug-induced liver injury: risk factors and drug development in DILI
- Prof. James H. Lewis
-
31. Drug-induced liver injury: HDS, diagnosing, treating and preventing DILI
- Prof. James H. Lewis
-
32. An update on the multiple faces of celiac disease
- Prof. Aaron Lerner
- Immunology
-
33. Rac-enhanced CAR immunotherapy: RaceCAR
- Prof. Denise Montell
-
34. Enhancing innate anti-tumour immunity: lessons from virotherapy and STING agonism 1
- Prof. Kevin Harrington
-
35. Enhancing innate anti-tumour immunity: lessons from virotherapy and STING agonism 2
- Prof. Kevin Harrington
-
36. Drug allergy: new knowledge
- Prof. Mariana C. Castells
-
37. Biologics as a treatment strategy in food allergy
- Prof. Sayantani B. Sindher
-
38. B cells at the crossroads of autoimmune diseases
- Dr. Xiang Lin
-
39. Studying immune responses “one cell at a time”
- Dr. Mir-Farzin Mashreghi
-
40. Mathematical modeling in immunology
- Prof. Ruy M. Ribeiro
-
41. Therapeutic antibody development
- Prof. Dr. Katja Hanack
-
42. Understanding treatment coverage in mass drug administrations
- Dr. Margaret Baker
-
43. The thymus and T cell development: a primer
- Prof. Georg Holländer
- Infectious Diseases
-
45. The Global Virus Network: collaboration to address pandemic and regional threats
- Prof. Sten H. Vermund
-
46. New concepts in the management of CAP: a focus on severe illness - treatment and therapies
- Prof. Michael S. Niederman
-
47. New concepts in the management of CAP: a focus on severe illness - MRSA and MDR pathogens
- Prof. Michael S. Niederman
-
48. CRISPR-based suppression drives for vector control
- Prof. Andrea Crisanti
-
49. HIV cure: harnessing innate and adaptive strategies
- Prof. Luis Montaner
- Cardiovascular, Metabolism & Nutrition
-
50. Cow’s milk allergy: the future
- Dr. Carina Venter
-
51. Cow's milk allergy: management
- Dr. Carina Venter
-
52. Moving from GWAS hits to functional variants
- Prof. Steve Humphries
-
53. X-linked hypophosphataemia: genetics, diagnosis and management
- Prof. Thomas O. Carpenter
-
54. What is new in type 1 diabetes?
- Prof. Åke Lernmark
-
55. Current concepts for the management of patients with osteoporosis
- Dr. Michael Lewiecki
-
56. Antibodies to control or prevent type 1 diabetes
- Dr. Robert Hilbrands
-
57. Peptide YY (PYY) in obesity and diabetes
- Dr. Nigel Irwin
- Microbiology
-
58. Vaccines and the fight against antimicrobial resistance 1
- Dr. Annaliesa S. Anderson
-
59. Vaccines and the fight against antimicrobial resistance 2
- Dr. Annaliesa S. Anderson
-
60. Vaccines as a weapon against antibiotic resistance
- Dr. Pumtiwitt McCarthy
-
61. PathoLive: pathogen detection while sequencing
- Dr. Simon Tausch
-
63. Successes and failures with vaccines
- Prof. Stanley Plotkin
-
64. Immunology, the microbiome and future perspectives
- Prof. Sheena Cruickshank
-
65. Impact of the HPV vaccine programme – a changing landscape
- Dr. Kevin Pollock
- Neurology and Neuroscience
-
66. Advances in the diagnosis and treatment of tardive dyskinesia
- Prof. Emeritus Stanley N. Caroff
-
67. Cellular therapies for neurological Injuries: bioreactors, potency, and coagulation
- Prof. Charles S. Cox, Jr.
-
68. Cardiovascular involvement in Parkinson’s disease
- Dr. David S. Goldstein
-
69. Molecular brain imaging (PET) in diseases with dementia
- Prof. Karl Herholz
-
70. Current thinking in pain medicine and some thoughts on back pain
- Dr. Nick Hacking
-
71. Bioelectronic medicine: immunomodulation by vagus nerve stimulation
- Prof. Paul Peter Tak
-
72. Developments & future directions in the management of chronic pain
- Prof. Simon Haroutounian
-
73. Deep Brain Stimulation (DBS) neuromodulation for Schizophrenia
- Prof. Judith Gault
-
74. Parkinson’s at 200 years: an update on Parkinson’s research in 2017
- Prof. Patrick A. Lewis
-
75. Alzheimer's disease: where are we up to?
- Prof. John Hardy
- Pharmaceutical Sciences
-
76. Pharmacokinetics, -dynamics and dosing considerations in children
- Prof. Dr. Karel Allegaert
-
77. Why in vitro permeation test – and not in vivo?
- Prof. Howard Maibach
-
78. The future of plasma-derived medicinal products (PDMP)
- Dr. Daniele Focosi
-
79. RNA therapeutics: clinical applications and methods of delivery
- Prof. John P. Cooke
-
80. Recent advances in the development of gene delivery technologies
- Dr. Takis Athanasopoulos
-
81. Preclinical translation of mesenchymal stem cell therapies
- Dr. Peter Childs
-
82. Modulating gene expression to treat diseases
- Dr. Navneet Matharu
-
83. Accelerating drug discovery with machine learning and AI
- Dr. Olexandr Isayev
-
84. AI and big data in drug discovery
- Mr. Ed Addison
-
85. Emerging big data in medicinal chemistry: promiscuity analysis as an example
- Prof. Dr. Jürgen Bajorath
- Dr. Ye Hu
-
86. Binding kinetics in drug discovery
- Dr. Rumin Zhang
-
87. Modeling of antibody-drug conjugate pharmacokinetics
- Dr. Dhaval K. Shah
-
88. Antibody engineering: beginnings to bispecifics and beyond
- Dr. Ian Wilkinson
-
89. Current challenges in the design of antibody-drug conjugates
- Prof. L. Nathan Tumey
-
90. Inorganic nanostructured interfaces for therapeutic delivery
- Prof. Tejal Desai
-
91. Latest development in therapy-related autophagy research
- Dr. Vignir Helgason
- Respiratory Diseases
-
92. Respiratory syncytial virus vaccination
- Prof. Peter Openshaw
-
93. Advances in gene therapy for respiratory diseases 1
- Prof. John F. Engelhardt
-
94. Advances in gene therapy for respiratory diseases 2
- Prof. John F. Engelhardt
-
95. Asthma
- Prof. William Busse
- Dr. Amanda McIntyre
-
96. New drugs for asthma
- Prof. Peter Barnes
-
97. CompEx asthma: a novel composite exacerbation endpoint
- Dr. Carla A. Da Silva
-
98. Updates in chronic obstructive pulmonary disease (COPD)
- Dr. Omar S. Usmani
Printable Handouts
Navigable Slide Index
- Introduction
- Outline
- What are mitochondria?
- Exercise-induced mitochondrial biogenesis
- Mitochondrial biogenesis
- Mitochondrial DNA (mtDNA)
- Mitochondrial nucleoid
- The electron transport chain
- Epidemiology of mitochondrial diseases
- Discovery of mtDNA mutations → mitochondrial diseases (1988)
- Discovery of mtDNA mutations → mitochondrial diseases (1992)
- Patterns of inheritance
- mtDNA heteroplasmy
- Adult onset of mitochondrial disease
- Mitochondrial respiratory-chain disease
- Mitochondrial diseases (1)
- Mitochondrial diseases (2)
- MELAS
- LHON
- KSS
- Childhood onset of mitochondrial disease
- Nuclear gene defects in mitochondrial diseases and their function
- Childhood-onset mitochondrial disease
- Mitochondrial diseases (3)
- POLG
- Leigh syndrome
- Clinical symptoms of mitochondrial diseases
- Mitochondrial disease diagnosis
- Treatment strategies
- Mouse model of aging: polymerase gamma (POLG) mutator mice
- Exercise rescues progeroid aging and induces systemic mitochondrial rejuvenation
- Therapeutic options for mitochondrial diseases
- Current clinical trials in mitochondrial diseases
- Other mitochondrial-related disorders
- Summary
- Acknowledgements
- References (1)
- References (2)
Topics Covered
- Mitochondria and mitochondrial biogenesis
- mtDNA and nucleoids
- The electron transport chain
- Epidemiology of mitochondrial diseases
- Heteroplasmy
- Mitochondrial diseases
- Adult and childhood onset of mitochondrial diseases (POLG, MELAS, LHON, KSS, Leigh syndrome)
- Treatment of mitochondrial diseases
- Mitochondrial-dysfunction related disorders
Links
Series:
- Mitochondrial Biogenesis
- Periodic Reports: Advances in Clinical Interventions and Research Platforms
Categories:
Talk Citation
Saleem, A. (2020, March 31). Mitochondrial diseases: an update [Video file]. In The Biomedical & Life Sciences Collection, Henry Stewart Talks. Retrieved February 5, 2025, from https://doi.org/10.69645/ODQO8313.Export Citation (RIS)
Publication History
Financial Disclosures
- There are no commercial/financial matters to disclose.
A selection of talks on Biochemistry
Transcript
Please wait while the transcript is being prepared...
0:00
Welcome to the Henry
Stewart Talks.
My name is Ayesha Saleem
and I'm an assistant
professor in
the Faculty of Kinesiology
and Recreation Management
at the University
of Manitoba and
a principal investigator at
the Children's Hospital
Research Institute of Manitoba.
The title of today's talk is
Mitochondrial
Diseases: An Update.
0:22
This is the outline
for the talk today.
First I will give some
background information
on mitochondria and its
structural components.
Then I will delve into
the epidemiology of
mitochondrial disease.
I will follow that up by
looking at adult-onset and
then childhood-onset
mitochondrial diseases that are
characterized primarily
by defects in
mitochondrial and nuclear
DNA respectively.
Finally, I will explore
the symptoms and
therapeutic options for
mitochondrial diseases and
finish the talk by
discussing a subset of
non-communicable
diseases that are
linked to dysfunctional
mitochondria.
0:60
About 2 billion years ago,
a single fusion event between
a prokaryotic and a
eukaryotic cell may have
ultimately led to
the presence of
mitochondria within
our cells today.
Mitochondria are tiny
organelles found in
almost all eukaryotic cells,
and are necessary for
cell form and function.
Known as the powerhouse
of the cell,
mitochondria are responsible
for creating more than 90% of
cellular energy or ATP through
oxidative phosphorylation.
In addition to
their main role in
energy production
and metabolism,
mitochondria are the site for
synthesis of
iron-sulfur clusters,
steroid biosynthesis
and are involved
in initiating apoptosis
or programmed cell death,
production and removal of
reactive oxygen species,
oxidation of fatty acids
and regulation of
calcium signaling.
Shown is a schematic
of a mitochondrion.
Mitochondria are made of a
double phospholipid layer,
an outer mitochondrial membrane,
and an inner
mitochondrial membrane
that falls upon itself
and creates cristae,
thereby maximizing surface
area for chemical reactions.
The space between
the two membranes
is called the
inter-membrane space
and the space enclosed by
the inner mitochondrial membrane
is known as the matrix.
Mitochondria are unique
in that they are
the only sub-cellular
organelles to have
their own DNA that
can be found inside
the matrix in close proximity
to the electron transport chain.
The textbook depictions
of mitochondria
usually resort to a kidney
bean-shaped structure.
In reality, mitochondria
often exist in the form of
a reticular
interconnected network,
as shown in the
electron micrograph.
The dark structure is
of the mitochondria
found inside a
skeletal muscle fiber.
You can clearly appreciate
the beautiful organization
of cristae within
each mitochondrion that
gives the mitochondria
their characteristic
wrinkled appearance.
The number of
mitochondria per cell