Please wait while the transcript is being prepared...
0:00
My name is Jan-Willem Taanman,
I'm at the Department of Clinical Neurosciences
of the Institute of Neurology at University College London.
This lecture is on Mitochondrial Disorders and Neurodegeneration.
0:16
So in this lecture,
I will first discuss the mitochondrial structure, function, and genetics.
Then I will give an overview of diseases caused by mutations in mitochondrial DNA,
and finally, I will give an overview of diseases
caused by mutations in nuclear genes coding for mitochondrial proteins.
0:40
Mitochondria are essential eukaryotic organelles.
They are the descendants of alphaproteobacteria
that formed an endosymbiotic relationship
with ancestral eukaryotic organisms.
Mitochondria come in different sizes and shapes,
but often form a reticular network as shown here in this cultured multi-nuclear myotube.
Well, mitochondria are not static
but are highly dynamic organelles that undergo continual fission and fusion.
1:16
Structurally, mitochondria are characterized by a double membrane;
an outer membrane and an inner membrane that demarcate the intermembrane space,
and the inner membrane protrudes into the matrix to form the cristae membranes.
1:33
Well, per definition, all mitochondria are able to carry out two functions,
and that is generation of ATP coupled to electron transport
in a process called oxidative phosphorylation.
Secondly, the expression of an integral genome.
In other words, mitochondria have their own mitochondrial DNA.