We noted you are experiencing viewing problems
-
Check with your IT department that JWPlatform, JWPlayer and Amazon AWS & CloudFront are not being blocked by your network. The relevant domains are *.jwplatform.com, *.jwpsrv.com, *.jwpcdn.com, jwpltx.com, jwpsrv.a.ssl.fastly.net, *.amazonaws.com and *.cloudfront.net. The relevant ports are 80 and 443.
-
Check the following talk links to see which ones work correctly:
Auto Mode
HTTP Progressive Download Send us your results from the above test links at access@hstalks.com and we will contact you with further advice on troubleshooting your viewing problems. -
No luck yet? More tips for troubleshooting viewing issues
-
Contact HST Support access@hstalks.com
-
Please review our troubleshooting guide for tips and advice on resolving your viewing problems.
-
For additional help, please don't hesitate to contact HST support access@hstalks.com
We hope you have enjoyed this limited-length demo
This is a limited length demo talk; you may
login or
review methods of
obtaining more access.
- Fundamental aspects
-
1. Inflammation and tissue homeostasis
- Prof. Herman Waldmann
-
2. Introduction to the immune system
- Prof. Herman Waldmann
-
3. Hematopoiesis: the making of an immune system
- Prof. Paul J. Fairchild
-
4. Inflammation: purposes, mechanisms and development
- Prof. Pietro Ghezzi
-
5. Phagocytosis
- Dr. Eileen Uribe-Querol
-
6. Regulated cell death mechanisms and their crosstalk with the immune system 1
- Dr. Luis Alberto Baena-Lopez
-
7. Regulated cell death mechanisms and their crosstalk with the immune system 2
- Dr. Luis Alberto Baena-Lopez
- Innate immunity
-
11. Cells of the innate immune system
- Prof. Kevin Maloy
-
12. Microbial recognition and the immune response
- Dr. Dana Philpott
-
13. Toll-like receptor signalling during infection and inflammation
- Prof. Luke O'Neill
- Intercellular mediators
-
14. Chemokines
- Dr. James E. Pease
-
15. Cytokines
- Prof. Iain McInnes
-
16. IL-1 family cytokines as the canonical DAMPs of the immune system
- Prof. Seamus Martin
-
17. Glycans at the frontiers of inflammation, autoimmunity and cancer
- Prof. Salomé S. Pinho
-
18. Glycoimmunology
- Prof. Paula Videira
- Adaptive immunity B cells
-
21. Antigen recognition in the immune system
- Prof. Herman Waldmann
-
22. B cell biology
- Prof. Richard Cornall
-
23. Antibody structure and function: antibody structure
- Dr. Mike Clark
-
24. Antibody structure and function: antibody function
- Dr. Mike Clark
-
25. Antibody genes and diversity
- Dr. Mike Clark
-
26. In vivo antibody discovery and hybridoma technology
- Prof. Dr. Katja Hanack
-
27. Antibody engineering: beginnings to bispecifics and beyond
- Dr. Ian Wilkinson
-
29. The immunobiology of Fc receptors
- Prof. Mark Cragg
-
30. Immunoreceptors
- Prof. Anton van der Merwe
-
31. Affinity, avidity and kinetics in immune recognition
- Prof. Anton van der Merwe
- Adaptive immunity T cells
-
32. The thymus and T cell development: a primer
- Prof. Georg Holländer
-
33. Lineage decisions in the thymus: T cell lineage commitment
- Prof. Bruno Silva-Santos
-
34. Lineage decisions in the thymus: αβ and γδ T cell lineages
- Prof. Bruno Silva-Santos
-
35. CD4 T cell subsets
- Dr. Brigitta Stockinger
-
36. Cytotoxic T lymphocytes
- Prof. Gillian M. Griffiths
-
37. Gamma delta T-cells
- Prof. Bruno Silva-Santos
-
38. Tfh and Tfr cells
- Prof. Luis Graca
-
39. Tissue resident memory T cells (TRM)
- Dr. Marc Veldhoen
-
40. Mathematical modeling in immunology
- Prof. Ruy M. Ribeiro
- The importance of the MHC in immunity
-
41. The MHC and MHC molecules 1
- Prof. Jim Kaufman
-
42. The MHC and MHC molecules 2
- Prof. Jim Kaufman
-
43. Natural killer cells
- Dr. Philippa Kennedy
-
44. Human NK cells
- Prof. Lorenzo Moretta
-
46. NK cells in viral immunity
- Prof. Lewis Lanier
- Lymphocyte activation
-
47. Signal transduction by leukocyte receptors
- Dr. Omer Dushek
-
48. Immunological memory 1
- Prof. David Gray
-
49. Immunological memory 2
- Prof. David Gray
-
50. Studying immune responses “one cell at a time”
- Dr. Mir-Farzin Mashreghi
- Major cellular partners in immunity
-
51. The mononuclear phagocyte system - tissue resident macrophages: distribution and functions
- Prof. Emeritus Siamon Gordon
-
52. The mononuclear phagocyte system: tissue resident macrophages - activation and regulation
- Prof. Emeritus Siamon Gordon
-
53. Dendritic cells: professional antigen presenting cells
- Prof. Paul J. Fairchild
-
54. Mucosal immunology
- Prof. Daniel Mucida
- Immunological tolerance and regulation
-
55. Self-tolerance
- Prof. Herman Waldmann
-
56. Tolerance and autoimmunity
- Prof. Emerita Anne Cooke
-
57. The balance between intestinal immune homeostasis and inflammation
- Prof. Dr. Janneke Samsom
- Translational immunology - immune deficiency
-
58. Primary immunodeficiency disorders
- Dr. Smita Y. Patel
-
59. Changes in innate and adaptive immunity during human ageing 1
- Dr. Roel De Maeyer
-
60. Changes in innate and adaptive immunity during human ageing 2
- Dr. Roel De Maeyer
-
61. The aging immune system
- Prof. Ana Caetano
- Translational immunology - protection against pathogenic microbes
-
62. Immune responses to viruses
- Prof. Paul Klenerman
-
63. HIV and the immune system
- Prof. Quentin Sattentau
-
64. COVID-19: the anti-viral immune response
- Prof. Danny Altmann
-
65. Bacterial immune evasion
- Prof. Christoph Tang
-
66. The immunology underlying tuberculosis
- Prof. Thomas R. Hawn
-
67. Innate immunity to fungi
- Prof. Gordon D. Brown
-
68. Parasite immunity: introduction and Plasmodium
- Dr. Catarina Gadelha
-
69. Parasite immunity: Leishmania and Schistosoma
- Dr. Catarina Gadelha
-
70. Vaccination
- Dr. Anita Milicic
-
71. The history of vaccines 1
- Prof. Emeritus Anthony R. Rees
-
72. The history of vaccines 2
- Prof. Emeritus Anthony R. Rees
-
73. The history of vaccines 3
- Prof. Emeritus Anthony R. Rees
-
74. The science of vaccine adjuvants
- Dr. Derek O'Hagan
- Translational immunology - hypersensitivity, autoimmune disease and their management
-
75. Hypersensitivity diseases: type 1 hypersensitivity
- Prof. Herman Waldmann
-
76. Innate lymphoid cells in allergy
- Prof. Emeritus Shigeo Koyasu
-
77. Hypersensitivity diseases: type II-IV hypersensitivity
- Prof. Sara Marshall
-
78. Immune memory underlying lifelong peanut allergy
- Dr. Kelly Bruton
-
79. Memory B cells in allergy: B cell activation and response
- Dr. Kelly Bruton
-
80. Memory B cells in allergy: ontogeny, phenotype and plasticity
- Dr. Kelly Bruton
-
81. B cells at the crossroads of autoimmune diseases
- Dr. Xiang Lin
-
82. Interleukin-17: from clone to clinic
- Prof. Leonie Taams
-
83. Autoimmunity and type 1 diabetes
- Prof. Emerita Anne Cooke
-
84. What is new in type 1 diabetes?
- Prof. Åke Lernmark
-
85. Antibodies to control or prevent type 1 diabetes
- Dr. Robert Hilbrands
-
86. Monoclonal antibodies in haemato-oncology
- Prof. Mark Cragg
-
87. Therapeutic antibodies
- Dr. Geoffrey Hale
-
88. Endothelial cells: regulators of autoimmune-neuroinflammation
- Dr. Laure Garnier
-
89. Neuroimmunometabolism
- Prof. Ana Domingos
-
90. The immunology of multiple sclerosis
- Dr. Joanne Jones
-
91. Immunology of the peripheral nervous system: the inflammatory neuropathies
- Dr. Simon Rinaldi
-
92. Ocular immunology: an overview of immune mechanisms operating in the eye
- Dr. Eleftherios Agorogiannis
-
93. Understanding myasthenia gravis and advances in its management
- Prof. Henry J. Kaminski
-
94. The immunology underlying rheumatic diseases
- Dr. Hussein Al-Mossawi
-
96. Complement and lupus
- Prof. Marina Botto
-
97. Immune mechanisms in liver diseases
- Prof. Paul Klenerman
- Translational immunology - transplantation immunology
-
98. Principles of transplantation: overview of the immune response
- Prof. Emerita Kathryn Wood
-
99. Factors influencing outcomes in clinical transplantation 1
- Prof. Emerita Kathryn Wood
-
100. Factors influencing outcomes in clinical transplantation 2
- Prof. Emerita Kathryn Wood
- Translational immunology - cancer immunology
-
101. Cancer immunology
- Prof. Tim Elliott
-
102. Cancer immunotherapy
- Prof. Tim Elliott
-
103. Myeloid-derived suppressor cells in cancer
- Prof. Dmitry Gabrilovich
-
104. IL-2 in the immunotherapy of autoimmunity and cancer
- Prof. Thomas Malek
-
105. Latest advances in the development of CAR & TCR T-cell treatments for solid tumours
- Dr. Else Marit Inderberg
Printable Handouts
Navigable Slide Index
- Introduction
- Inflammatory diseases: the facts
- A starting point: a Russian, Mechnikov
- Almroth Wright, founding father of innate immunity
- Up to 1990s: focus on the antigen (Ag)
- Janeway, a key review
- Approaching the asymptote?
- Pathogen associated molecular patterns
- Innate immunity 2009: seven families of PRRs
- Innate immunity to viruses 2010
- The sea urchin: 222 TLRs
- NF-kappaB and p38 as key IL1 signals
- IL-1R family
- Toll!
- The mouldy fly... Toll-deficient Drosophila
- IL-1 receptor family
- The Toll / IL-1R superfamily in humans
- Toll-like receptors: are they important?
- Mal S180L and disease
- When did Mal L180 arise in humans?
- World distribution of MAL S180L
- Superimposing Mal variants
- The leucine mutation occurrence
- Malaria, IPD, TB, Sepsis, SLE
- A family that split 67,000 years ago reunited
- How do TLRs work?
- Toll-like receptors
- TLR4: ignition followed by acceleration
- TLRs in disease: allergy
- TLR4-MAPK-NF-kappaB interaction network
- TLR4 subcellular signalling
- TLR9 subcellular signalling
- Summary
Topics Covered
- Inflammatory diseases
- Development of the immunology field
- Pattern recognition receptors
- Innate immunity to viruses
- Toll-deficient Drosophila
- IL-1 receptor family
- Toll-Like Receptors (TLR): how do we know they are important?
- Mal S180L and disease
- How do TLRs work?
- TLRs in disease
- Subcellular signalling
- Therapeutic potential
Links
Series:
Categories:
Therapeutic Areas:
Talk Citation
O'Neill, L. (2020, May 23). Toll-like receptor signalling during infection and inflammation [Video file]. In The Biomedical & Life Sciences Collection, Henry Stewart Talks. Retrieved February 5, 2025, from https://doi.org/10.69645/BKUJ5997.Export Citation (RIS)
Publication History
Financial Disclosures
- Prof. Luke O'Neill has not informed HSTalks of any commercial/financial relationship that it is appropriate to disclose.
Update Available
The speaker addresses developments since the publication of the original talk. We recommend listening to the associated update as well as the lecture.
- Full lecture Duration: 46:50 min
- Update Interview Duration: 24:56 min
A selection of talks on Immunology & Inflammation
Transcript
Please wait while the transcript is being prepared...
0:00
All right, so my topic is toll-like
receptors and their signaling pathways.
And their role in infectious diseases and
in the inflammatory process.
And really this has been a very exciting
area for immunology over the past,
I guess, ten years or so.
Because the discovery of these toll-like
receptors has really increased our
understanding of the immune response,
especially innate immunity.
And really the way we view it is it
has been a renaissance of interest in
the innate immune response and
how that kicks in and
respond to bacterial pathogens.
Also viruses, fungi, parasites,
every pathogen that infects us,
these toll-like receptors have a key role.
And I'm gonna go over what
toll-like receptors are,
a bit of history about how
they were discovered and
then their main role in the inflammatory
and infectious response.
0:42
So what we're really talking
about is inflammation, and
inflammatory diseases are a major
problem for humanity.
The overall incidence is about 25%.
And inflammatory diseases include
things like infectious diseases,
which is a major topic period of course.
But also diseases like arthritis,
rheumatoid and osteoarthritis, asthma,
MS, Crohn's disease, colitis.
All of these involve defective
inflammatory processes and of course,
inflammation evolved as a way
to handle pathogens and
come up with a way to defend us against
pathogens like viruses and bacteria.
When it goes wrong,
we get these horrible diseases.
And of course there are drugs
out there to treat inflammation,
anti-inflammatory drugs.
There are newer drugs like Enbrel and
Remicade, which block things like TNF,
Rituxin blocks B cells,
Tosilimumab blocks IL-6.
But really over the past 10 to 15 years or
so, innate immunity has
become a major focus for studies into
inflammation and the inflammatory process.
The hope being that if we understand the
innate immune response we'd have better
treatments for infection, and
also these inflammatory diseases.
And this is firmly where these
toll-like receptors sit,
their discovery as I say gave rise
to this big increase in knowledge
of the innate immune response,
and give us new hope for
the targeting of these horrible
pathogens during infectious diseases.