We noted you are experiencing viewing problems
-
Check with your IT department that JWPlatform, JWPlayer and Amazon AWS & CloudFront are not being blocked by your network. The relevant domains are *.jwplatform.com, *.jwpsrv.com, *.jwpcdn.com, jwpltx.com, jwpsrv.a.ssl.fastly.net, *.amazonaws.com and *.cloudfront.net. The relevant ports are 80 and 443.
-
Check the following talk links to see which ones work correctly:
Auto Mode
HTTP Progressive Download Send us your results from the above test links at access@hstalks.com and we will contact you with further advice on troubleshooting your viewing problems. -
No luck yet? More tips for troubleshooting viewing issues
-
Contact HST Support access@hstalks.com
-
Please review our troubleshooting guide for tips and advice on resolving your viewing problems.
-
For additional help, please don't hesitate to contact HST support access@hstalks.com
We hope you have enjoyed this limited-length demo
This is a limited length demo talk; you may
login or
review methods of
obtaining more access.
- Cancer and Oncology
-
3. Latest advances in the development of CAR & TCR T-cell treatments for solid tumours
- Dr. Else Marit Inderberg
-
4. Mode of action of T cells engineered with CAR or TCR for cancer treatment
- Prof. Sebastian Kobold
-
5. Immunotherapy: insights from advanced disease
- Dr. Sara M. Tolaney
-
6. Recent advances in the field of non-coding RNAs in cancer
- Prof. George Calin
- Dr. Maitri Shah
-
7. How tumor-microenvironment interactions drive or inhibit metastasis
- Prof. Isaac P. Witz
-
8. A novel cancer therapy to stimulate oncogenic ERK signalling
- Prof. Reiko Sugiura
-
9. MRD-driven multiple myeloma treatment: next step forward
- Prof. Ola Landgren
-
11. Germinal centre lymphomas: advances in diagnostic and therapeutic intervention
- Dr. Koorosh Korfi
- Prof. Jude Fitzgibbon
-
12. Immunotherapy in lung cancer
- Dr. Mark M. Awad
-
13. Preservation of fertility in cancer patients: the impact of chemotherapy
- Prof. Kutluk H. Oktay
-
15. Solution proposed to a 2000 year old problem in oncology
- Dr. Michael Retsky
- Clinical Practice
-
16. Stillbirth: diagnosis, investigation and aftercare
- Prof. Alexander E. P. Heazell
-
17. Analyzing the medical relevance of skin care trends
- Prof. Zoe Draelos
-
18. Genetic counseling: preconception, prenatal, perinatal
- Prof. Aubrey Milunsky
-
19. The past, present & future of ANA testing: history and challenges of ANA
- Prof. Marvin J. Fritzler
-
20. The past, present & future of ANA testing: changing bandwidth and future of ANA
- Prof. Marvin J. Fritzler
-
22. Mitochondrial diseases: an update
- Dr. Ayesha Saleem
-
23. Hemophilia A
- Dr. Snejana Krassova
-
26. Recent advances in diagnosis and interventions in ophthalmology
- Dr. Rebecca Kaye
- Prof. Andrew Lotery
- Gastroenterology
-
27. Building implantable human liver tissue from pluripotent stem cells
- Prof. David C. Hay
-
28. Microbiome therapies to treat gastrointestinal diseases
- Dr. Patricia Bloom
-
29. Drug-induced liver injury: importance, epidemiology, and mechanisms of DILI
- Prof. James H. Lewis
-
30. Drug-induced liver injury: risk factors and drug development in DILI
- Prof. James H. Lewis
-
31. Drug-induced liver injury: HDS, diagnosing, treating and preventing DILI
- Prof. James H. Lewis
-
32. An update on the multiple faces of celiac disease
- Prof. Aaron Lerner
- Immunology
-
33. Rac-enhanced CAR immunotherapy: RaceCAR
- Prof. Denise Montell
-
34. Enhancing innate anti-tumour immunity: lessons from virotherapy and STING agonism 1
- Prof. Kevin Harrington
-
35. Enhancing innate anti-tumour immunity: lessons from virotherapy and STING agonism 2
- Prof. Kevin Harrington
-
36. Drug allergy: new knowledge
- Prof. Mariana C. Castells
-
37. Biologics as a treatment strategy in food allergy
- Prof. Sayantani B. Sindher
-
38. B cells at the crossroads of autoimmune diseases
- Dr. Xiang Lin
-
39. Studying immune responses “one cell at a time”
- Dr. Mir-Farzin Mashreghi
-
40. Mathematical modeling in immunology
- Prof. Ruy M. Ribeiro
-
41. Therapeutic antibody development
- Prof. Dr. Katja Hanack
-
42. Understanding treatment coverage in mass drug administrations
- Dr. Margaret Baker
-
43. The thymus and T cell development: a primer
- Prof. Georg Holländer
- Infectious Diseases
-
45. The Global Virus Network: collaboration to address pandemic and regional threats
- Prof. Sten H. Vermund
-
46. New concepts in the management of CAP: a focus on severe illness - treatment and therapies
- Prof. Michael S. Niederman
-
47. New concepts in the management of CAP: a focus on severe illness - MRSA and MDR pathogens
- Prof. Michael S. Niederman
-
48. CRISPR-based suppression drives for vector control
- Prof. Andrea Crisanti
-
49. HIV cure: harnessing innate and adaptive strategies
- Prof. Luis Montaner
- Cardiovascular, Metabolism & Nutrition
-
50. Cow’s milk allergy: the future
- Dr. Carina Venter
-
51. Cow's milk allergy: management
- Dr. Carina Venter
-
52. Moving from GWAS hits to functional variants
- Prof. Steve Humphries
-
53. X-linked hypophosphataemia: genetics, diagnosis and management
- Prof. Thomas O. Carpenter
-
54. What is new in type 1 diabetes?
- Prof. Åke Lernmark
-
55. Current concepts for the management of patients with osteoporosis
- Dr. Michael Lewiecki
-
56. Antibodies to control or prevent type 1 diabetes
- Dr. Robert Hilbrands
-
57. Peptide YY (PYY) in obesity and diabetes
- Dr. Nigel Irwin
- Microbiology
-
58. Vaccines and the fight against antimicrobial resistance 1
- Dr. Annaliesa S. Anderson
-
59. Vaccines and the fight against antimicrobial resistance 2
- Dr. Annaliesa S. Anderson
-
60. Vaccines as a weapon against antibiotic resistance
- Dr. Pumtiwitt McCarthy
-
61. PathoLive: pathogen detection while sequencing
- Dr. Simon Tausch
-
63. Successes and failures with vaccines
- Prof. Stanley Plotkin
-
64. Immunology, the microbiome and future perspectives
- Prof. Sheena Cruickshank
-
65. Impact of the HPV vaccine programme – a changing landscape
- Dr. Kevin Pollock
- Neurology and Neuroscience
-
66. Advances in the diagnosis and treatment of tardive dyskinesia
- Prof. Emeritus Stanley N. Caroff
-
67. Cellular therapies for neurological Injuries: bioreactors, potency, and coagulation
- Prof. Charles S. Cox, Jr.
-
68. Cardiovascular involvement in Parkinson’s disease
- Dr. David S. Goldstein
-
69. Molecular brain imaging (PET) in diseases with dementia
- Prof. Karl Herholz
-
70. Current thinking in pain medicine and some thoughts on back pain
- Dr. Nick Hacking
-
71. Bioelectronic medicine: immunomodulation by vagus nerve stimulation
- Prof. Paul Peter Tak
-
72. Developments & future directions in the management of chronic pain
- Prof. Simon Haroutounian
-
73. Deep Brain Stimulation (DBS) neuromodulation for Schizophrenia
- Prof. Judith Gault
-
74. Parkinson’s at 200 years: an update on Parkinson’s research in 2017
- Prof. Patrick A. Lewis
-
75. Alzheimer's disease: where are we up to?
- Prof. John Hardy
- Pharmaceutical Sciences
-
76. Pharmacokinetics, -dynamics and dosing considerations in children
- Prof. Dr. Karel Allegaert
-
77. Why in vitro permeation test – and not in vivo?
- Prof. Howard Maibach
-
78. The future of plasma-derived medicinal products (PDMP)
- Dr. Daniele Focosi
-
79. RNA therapeutics: clinical applications and methods of delivery
- Prof. John P. Cooke
-
80. Recent advances in the development of gene delivery technologies
- Dr. Takis Athanasopoulos
-
81. Preclinical translation of mesenchymal stem cell therapies
- Dr. Peter Childs
-
82. Modulating gene expression to treat diseases
- Dr. Navneet Matharu
-
83. Accelerating drug discovery with machine learning and AI
- Dr. Olexandr Isayev
-
84. AI and big data in drug discovery
- Mr. Ed Addison
-
85. Emerging big data in medicinal chemistry: promiscuity analysis as an example
- Prof. Dr. Jürgen Bajorath
- Dr. Ye Hu
-
86. Binding kinetics in drug discovery
- Dr. Rumin Zhang
-
87. Modeling of antibody-drug conjugate pharmacokinetics
- Dr. Dhaval K. Shah
-
88. Antibody engineering: beginnings to bispecifics and beyond
- Dr. Ian Wilkinson
-
89. Current challenges in the design of antibody-drug conjugates
- Prof. L. Nathan Tumey
-
90. Inorganic nanostructured interfaces for therapeutic delivery
- Prof. Tejal Desai
-
91. Latest development in therapy-related autophagy research
- Dr. Vignir Helgason
- Respiratory Diseases
-
92. Respiratory syncytial virus vaccination
- Prof. Peter Openshaw
-
93. Advances in gene therapy for respiratory diseases 1
- Prof. John F. Engelhardt
-
94. Advances in gene therapy for respiratory diseases 2
- Prof. John F. Engelhardt
-
95. Asthma
- Prof. William Busse
- Dr. Amanda McIntyre
-
96. New drugs for asthma
- Prof. Peter Barnes
-
97. CompEx asthma: a novel composite exacerbation endpoint
- Dr. Carla A. Da Silva
-
98. Updates in chronic obstructive pulmonary disease (COPD)
- Dr. Omar S. Usmani
Printable Handouts
Navigable Slide Index
- Introduction
- Multi-step metastasis model: EMT is not a one-way street
- Circulating breast tumor cells exhibit EMT features
- Skin-specific inducible Twist1 mouse model
- Experimental design
- Twist1 induces rapid conversion from papillomas to invasive cell carcinomas
- Twist1 induces loss of E-cadherin
- Twist1 induces basement membrane breakdown
- Transient activation of Twist1 promotes distant metastasis
- Topical induction of Twist1 reverses EMT in metastases
- Reversible EMT promotes tumor metastasis
- Recording EMT by lineage tracing during metastasis
- Epithelial-mesenchymal plasticity in tumor metastasis
- Part II: Metastasis organotropism
- I. Blood circulation route affects seeding efficiency in distant organs
- II. “Seed and soil” hypothesis
- Selection of highly metastatic variants to various organs
- Bone metastasis gene signature
- Part III: targeting metastasis
- Metastasis dormancy
- Design the right clinical trials for metastasis prevention (1)
- Design the right clinical trials for metastasis prevention (2)
- Targeting osteoclasts via the RANKL/RANK pathway
- Denosumab clinical trial
- Conclusion
- Thank you for listening
Topics Covered
- Molecular regulation of EMT
- Adherens junction
- E-cadherins
- Epithelial-Mesenchymal Plasticity
- Metastasis dormancy
- Metastasis organ tropism
- Targeting tumor metastasis
Links
Series:
- The Molecular Basis of Cancer
- Periodic Reports: Advances in Clinical Interventions and Research Platforms
Categories:
Therapeutic Areas:
Talk Citation
Yang, J. (2023, April 30). The molecular basis of cancer metastasis: multi-step metastasis process and anti-metastasis therapeutic development [Video file]. In The Biomedical & Life Sciences Collection, Henry Stewart Talks. Retrieved February 5, 2025, from https://doi.org/10.69645/XJGQ4289.Export Citation (RIS)
Publication History
Financial Disclosures
- Prof. Jing Yang has not informed HSTalks of any commercial/financial relationship that it is appropriate to disclose.
The molecular basis of cancer metastasis: multi-step metastasis process and anti-metastasis therapeutic development
Published on April 30, 2023
26 min
A selection of talks on Oncology
Transcript
Please wait while the transcript is being prepared...
0:05
One major concept
I would like to
discuss is this multi-step
metastasis model.
In there the EMT program
is actually not a
one-way street.
The reason I say that
is because we all know
that when the patient
developed distant metastasis,
the distant metastasis
actually present
many of the same features
of the primary tumor.
What I mean is, if you
have a breast cancer,
the distant metastasis also is
a breast tumor and
may still express ER,
or still express HER2 and still
maintain a relative
epithilioid morphology.
There are a lot of
debate in the field.
If the distant
metastasis do not look
like a sarcoma does not look
like a mesenchymal tumor,
how can EMT program play a role?
I think that brought up to
this very important concept that
EMT is not a one-way street.
Tumor cells actually
appear on this program to
allow the invasion and
intravasation, the extravasation.
By that distant site,
we think this program
probably needs to be
turned off to allow
this migrated cell to
actually now stay in
a distant site to
start to regrow and
colonize the distance site.
In the next few slides,
I would like to show you
some of the evidence from
animal models to show the
importance of this plasticity.
1:30
But before I go on,
I want to show you the
evidence why we think
EMT plasticity exists
in human cancer.
I think the best
place to look at
this plasticity in human patient
is in circulating tumor cells.
This is the early
study from Ming Hu,
the isolated
circulating tumor cells
from breast cancer patients.
You can see there's 17
patients than they stained for
either epithelial or
mesenchymal markers defined
the circulating cell
either they're E
or EM or M.
As you can see here in the
majority of the patient,
there are highly
enriched sub population
of the cell that present
a mesenchymal signature.
And this has been reported
not only in breast cancer,
but also in many type of
human eye carcinomas.
So what this suggests is
that the enrichment of this
more mesenchymal
phenotype, this is a much
higher than present
in a primary tumor.
Usually the more
mesenchymal cell cannot be,
go over 10 percent.
Is that turning on this
program probably gave
this tumor cell the
advantage to be able to
enter the circulation
to become CTC.
Hide