Please wait while the transcript is being prepared...
0:00
Hello. My name is Soo-Eun Chang and I am
an assistant professor in the Department of Psychiatry at the University of Michigan.
The title of my talk is Brain Anatomy and
Functional Differences in Developmental Stuttering.
This lecture is part of the series on speech disfluency.
0:18
Fluent speech is something that most people take for granted.
It is produced naturally,
effortlessly and automatically for most people.
This is certainly not the case in people who stutter,
dramatically demonstrated in movies such as The King's Speech.
We know that fluent speech production is supported by
multiple brain areas and the connections and interactions among these structures.
In this lecture, I will review what
these critical structures and connections are that support fluent speech
and review accumulating evidence of
anomalous function and anatomy in these brain areas in speakers who stutter.
0:57
Here is the outline of my lecture.
I will first define neurodevelopmental disorders and point out that
many features of stuttering make it consistent to be
categorized as a neurodevelopmental disorder.
I will then talk about the neural mechanisms supporting
fluent speech and theoretical models that explain how fluent speech is generated.
I will point out some specific critical,
cortical and subcortical neural pathways that support fluent speech.
I will give a brief review and explanation of
major non-invasive neuroimaging techniques used
to study brain function and anatomy in humans,
and then talk about some convergent evidence mostly
derived from adult speakers who stutter in the past two decades or so.
I will then direct attention to
the still nascent findings from young children who stutter to
explain differences in brain development that are present even close to stuttering onset,
which may suggest more clearly what the neural basis of stuttering may be.
The lecture will conclude with future directions
and research involving advanced methodology that are
expected to help reveal
even more detailed information on the neural mechanisms behind stuttering onset,
persistence, and recovery during childhood.