Please wait while the transcript is being prepared...
0:00
Hi, my name is Nitya Raj.
And I'm going to be moving on
to the second portion of the talk
in which
we're going to be focusing in on
how to study for a Role
of Immunotherapy
in Neuroendocrine Tumors.
We spent the previous portion
of this talk
discussing our currently available
therapy options as of 2016.
0:24
So where does immunotherapy fall
into all of this?
And so as I spent
the first portion of my talk,
I've clearly explained
that we have many
treatment options,
yet there has been
a lot of interest
in evaluating
for a role of immunotherapy
in the management
of neuroendocrine tumors.
An immunotherapy
is a rapidly evolving field
in many types of cancer
with proven benefits
in kidney cancer,
lung cancer as well as melanoma.
And for this reason,
there has been increasing interest
in studying immunotherapy
in neuroendocrine tumors
begging the question,
"Where should we put immunotherapy
in our treatment algorithm?"
1:01
So I'd first like to discuss
why immunotherapy works in cancer.
In tumorigenesis,
cancer cells exploit
immune checkpoint pathways
to avoid detection
by the immune system
and evade immune destruction.
These pathways include
the PD-1 or PD-L1 pathway,
which stands for the programmed
cell death protein 1 pathways,
PD-L2, the programmed cell
death protein 2 pathway,
as well as CTLA-4
cytotoxic
T-lymphocyte-associated antigen 4.
For these pathways,
blocking of them
causes the activation of T cells
and accumulation
of T cells at the tumor site,
which is believed
to cause tumor death.
So clinically,
monoclonal antibodies
have actually been developed
to inhibit these immunological
checkpoints,
and these monoclonal antibodies
have demonstrated activity
in some solid tumors.
However, to date, few patients
with NETs have been treated
with checkpoint inhibitors.