On Sunday, April 20th 2025, starting 8:30am GMT, there will be maintenance work that will involve the website being unavailable during parts of the day. We apologize for any inconvenience this may cause and appreciate your understanding.
We noted you are experiencing viewing problems
-
Check with your IT department that JWPlatform, JWPlayer and Amazon AWS & CloudFront are not being blocked by your network. The relevant domains are *.jwplatform.com, *.jwpsrv.com, *.jwpcdn.com, jwpltx.com, jwpsrv.a.ssl.fastly.net, *.amazonaws.com and *.cloudfront.net. The relevant ports are 80 and 443.
-
Check the following talk links to see which ones work correctly:
Auto Mode
HTTP Progressive Download Send us your results from the above test links at access@hstalks.com and we will contact you with further advice on troubleshooting your viewing problems. -
No luck yet? More tips for troubleshooting viewing issues
-
Contact HST Support access@hstalks.com
-
Please review our troubleshooting guide for tips and advice on resolving your viewing problems.
-
For additional help, please don't hesitate to contact HST support access@hstalks.com
We hope you have enjoyed this limited-length demo
This is a limited length demo talk; you may
login or
review methods of
obtaining more access.
Printable Handouts
Navigable Slide Index
- Introduction
- Why the interest in symbiosis?
- Bacterial cell surface carbohydrates
- Adaptation of the bacterial cell surface
- The symbiotic infection process
- Rhizobium - "nod factors"
- Microbes and plant defense
- Nod factors and host defense
- The animal/plant innate defense response
- Chitin and nod factor recognition: a comparison
- Rhizobium LPS structures
- Rhizobial lipid A
- Other rhizobial lipid A structures
- Rhizobial lipid A 27-hydroxyoctacosanoic acid
- The phenotype of an acpXL mutant
- Changes in the bacteroid lipid A structure
- Removal of OPS alters cell surface ionic character
- The plant defense response to rhizobial LPS
- Some questions to answer
- Acknowledgements
Topics Covered
- Bacterial carbohydrates in microbe-host interactions
- Rhizobium cell surface carbohydrates and their role in forming a nitrogen-fixing symbiosis with their host legume
- Adaptation of bacterial cell surface carbohydrate structures in response to the host cell
- Production of a lipochitin oligosaccharide (LCO) by Rhizobium in response to flavonoids produced by the legume host
- Structures and relationship to a host defense response
- The plant defense response to rhizobial LCO
- The function of Rhizobial LCO as a microbial associated molecular pattern (MAMP)
- MAMP-triggered immunity
- Effector triggered immunity
- Rhizobial lipopolysaccharides (LPSs) in symbiosis
- Structures of the different LPS structural regions (lipid A, core oligosaccharide, and O-antigen polysaccharide) and their function in symbiosis
- The perception of rhizobial LPSs by the host
- Is rhizobial LPS a PAMP?
- Future research with LPS
Links
Series:
Categories:
Talk Citation
Carlson, R. (2012, November 27). The role of bacterial carbohydrates in microbe-plant interactions: Rhizobium- legume nitrogen-fixing symbiosis [Video file]. In The Biomedical & Life Sciences Collection, Henry Stewart Talks. Retrieved April 15, 2025, from https://doi.org/10.69645/XIST7128.Export Citation (RIS)
Publication History
- Published on November 27, 2012
Financial Disclosures
- Prof. Russell Carlson has not informed HSTalks of any commercial/financial relationship that it is appropriate to disclose.
The role of bacterial carbohydrates in microbe-plant interactions: Rhizobium- legume nitrogen-fixing symbiosis
Published on November 27, 2012
52 min
A selection of talks on Biochemistry
Hide