On Sunday, April 20th 2025, starting 8:30am GMT, there will be maintenance work that will involve the website being unavailable during parts of the day. We apologize for any inconvenience this may cause and appreciate your understanding.
We noted you are experiencing viewing problems
-
Check with your IT department that JWPlatform, JWPlayer and Amazon AWS & CloudFront are not being blocked by your network. The relevant domains are *.jwplatform.com, *.jwpsrv.com, *.jwpcdn.com, jwpltx.com, jwpsrv.a.ssl.fastly.net, *.amazonaws.com and *.cloudfront.net. The relevant ports are 80 and 443.
-
Check the following talk links to see which ones work correctly:
Auto Mode
HTTP Progressive Download Send us your results from the above test links at access@hstalks.com and we will contact you with further advice on troubleshooting your viewing problems. -
No luck yet? More tips for troubleshooting viewing issues
-
Contact HST Support access@hstalks.com
-
Please review our troubleshooting guide for tips and advice on resolving your viewing problems.
-
For additional help, please don't hesitate to contact HST support access@hstalks.com
We hope you have enjoyed this limited-length demo
This is a limited length demo talk; you may
login or
review methods of
obtaining more access.
- The Discovery of Protein Phosphorylation
-
1. Phosphorylase and the origin of reversible protein phosphorylation
- Prof. Edmond Fischer
- Protein Kinase Cascades
- The Modulation of Protein Function by Phosphorylation
-
4. Two is the key to 14-3-3: dimeric mechanical signaling devices
- Prof. Carol MacKintosh
- Protein Phosphatases
-
5. Structure and mechanisms of protein phosphatases
- Prof. David Barford
-
6. Protein tyrosine phosphatases
- Prof. Jack Dixon
-
7. The regulation of MAP kinase signalling by dual-specificity protein phosphatases
- Prof. Steve M. Keyse
- The Structures of Protein Kinases
-
9. Protein kinase structure, function and regulation
- Prof. Susan Taylor
-
10. The structural basis for the modulation of protein function by protein phosphorylation
- Prof. Dame Louise N. Johnson
- Biological Systems that are Regulated by Reversible Phosphorylation
-
11. Protein phosphorylation and the control of protein synthesis
- Prof. Christopher Proud
-
13. Roles of AMPK in energy homeostasis and nutrient sensing
- Prof. Grahame Hardie
-
14. Serine kinases and T lymphocyte biology
- Prof. Doreen Cantrell
-
15. The interplay between protein phosphorylation and ubiquitylation in the NF-κB pathway
- Prof. Zhijian 'James' Chen
-
16. SMAD phosphorylation and the TGF-beta pathway
- Prof. Joan Massagué
- Protein Kinases and Human Disease
-
17. Function and regulation of the PDK1 kinase
- Prof. Dario Alessi
-
18. LKB1 pathway and its role in cancer
- Prof. Dario Alessi
-
19. WNK1 pathway and its role in regulating hypertension
- Prof. Dario Alessi
-
20. The hyperphosphorylation of tau and Alzheimer's disease
- Prof. Michel Goedert
- Protein Kinases as Targets for the Development of Anti-Cancer Drugs
-
21. PI3K/AKT signaling in cancer
- Prof. Neal Rosen
-
22. RAS and RAF signaling in melanoma: biology and therapies
- Prof. Richard Marais
-
23. The mTOR kinase as a target for anti-cancer drugs
- Prof. David Sabatini
- Archived Lectures *These may not cover the latest advances in the field
-
25. AMP-activated protein kinase: regulating cellular and whole body energy balance
- Prof. Grahame Hardie
Printable Handouts
Navigable Slide Index
- Introduction
- The DNA molecule
- Agents that damage the DNA
- Endogenous DNA damage in mammalian cells
- DSB repair pathways
- The DNA damage response
- Cellular responses to DNA damage
- Localized DNA damage
- Proteins recruitment to the DS break
- Genomic instability syndromes
- Ataxia-telangiectasia history
- Ataxia-telangiectasia characteristics
- ATM and DNA damage response
- The ATM protein
- ATM activation
- ATM-mediated DNA damage responses
- PI3-kinase-related protein kinases
- p53 activation and stabilization by ATM
- Research directions
- ATM-mediated DNA damage response branches
- A SPIKE map
- Identification of ATM/ATR/DNA-PK substrates
- Insights into the ATM-mediated DDR
- Defective repair of DNA double strand breaks
- ATM-mediated signaling facilitating DSB repair
- Polynucleotide kinase 3'-phosphatase
- ATM-mediated phosphorylation of PNKP
- Allowing repair to happen within chromatin
- ATM-dependent phosphorylation of KAP-1
- ATM effects chromatin reorganization
- ATM-mediated H2B monoubiquitination
- DNA damage response and the ubiquitin family
- Players in ubiquitin-related processes
- Overlap between Ub arena and ATM substrates
- Phosphoproteome dynamics after DNA damage
- Damage-induced protein phosphorylation
- Functional networks of phosphorylated proteins
- Overlap between Ub, ATM and phosporylation
- Functional screens for novel DDR players
- Results of a functional screen
- Summary
Topics Covered
- Endogenous DNA damage in mammalian cells
- DSB repair pathways
- Cellular responses to DNA damage
- Genomic instability syndromes
- Ataxia-telangiectasia
- The ATM protein
- ATM-mediated DNA damage responses
- A SPIKE map
- Defective repair of DNA double strand breaks
- Allowing repair to happen within chromatin
- DNA damage response and the ubiquitin family
- Players in ubiquitin-related processes
- Phosphoproteome dynamics after DNA damage
- Functional networks of phosphorylated proteins
- Overlap between Ub, ATM and phosporylation
- Functional screens for novel DDR players
Talk Citation
Shiloh, Y. (2011, July 5). The role of phosphorylation in mediating cellular responses to DNA damage: the ATM-mediated DNA damage response [Video file]. In The Biomedical & Life Sciences Collection, Henry Stewart Talks. Retrieved April 19, 2025, from https://doi.org/10.69645/KNEK3598.Export Citation (RIS)
Publication History
- Published on July 5, 2011
Financial Disclosures
- Prof. Yosef Shiloh has not informed HSTalks of any commercial/financial relationship that it is appropriate to disclose.
The role of phosphorylation in mediating cellular responses to DNA damage: the ATM-mediated DNA damage response
Published on July 5, 2011
62 min
A selection of talks on Cell Biology
Hide