Registration for a live webinar on 'Precision medicine treatment for anticancer drug resistance' is now open.
See webinar detailsWe noted you are experiencing viewing problems
-
Check with your IT department that JWPlatform, JWPlayer and Amazon AWS & CloudFront are not being blocked by your network. The relevant domains are *.jwplatform.com, *.jwpsrv.com, *.jwpcdn.com, jwpltx.com, jwpsrv.a.ssl.fastly.net, *.amazonaws.com and *.cloudfront.net. The relevant ports are 80 and 443.
-
Check the following talk links to see which ones work correctly:
Auto Mode
HTTP Progressive Download Send us your results from the above test links at access@hstalks.com and we will contact you with further advice on troubleshooting your viewing problems. -
No luck yet? More tips for troubleshooting viewing issues
-
Contact HST Support access@hstalks.com
-
Please review our troubleshooting guide for tips and advice on resolving your viewing problems.
-
For additional help, please don't hesitate to contact HST support access@hstalks.com
We hope you have enjoyed this limited-length demo
This is a limited length demo talk; you may
login or
review methods of
obtaining more access.
- The Discovery of Protein Phosphorylation
-
1. Phosphorylase and the origin of reversible protein phosphorylation
- Prof. Edmond Fischer
- Protein Kinase Cascades
- The Modulation of Protein Function by Phosphorylation
-
4. Two is the key to 14-3-3: dimeric mechanical signaling devices
- Prof. Carol MacKintosh
- Protein Phosphatases
-
5. Structure and mechanisms of protein phosphatases
- Prof. David Barford
-
6. Protein tyrosine phosphatases
- Prof. Jack Dixon
-
7. The regulation of MAP kinase signalling by dual-specificity protein phosphatases
- Prof. Steve M. Keyse
- The Structures of Protein Kinases
-
9. Protein kinase structure, function and regulation
- Prof. Susan Taylor
-
10. The structural basis for the modulation of protein function by protein phosphorylation
- Prof. Dame Louise N. Johnson
- Biological Systems that are Regulated by Reversible Phosphorylation
-
11. Protein phosphorylation and the control of protein synthesis
- Prof. Christopher Proud
-
13. Roles of AMPK in energy homeostasis and nutrient sensing
- Prof. Grahame Hardie
-
14. Serine kinases and T lymphocyte biology
- Prof. Doreen Cantrell
-
15. The interplay between protein phosphorylation and ubiquitylation in the NF-κB pathway
- Prof. Zhijian 'James' Chen
-
16. SMAD phosphorylation and the TGF-beta pathway
- Prof. Joan Massagué
- Protein Kinases and Human Disease
-
17. Function and regulation of the PDK1 kinase
- Prof. Dario Alessi
-
18. LKB1 pathway and its role in cancer
- Prof. Dario Alessi
-
19. WNK1 pathway and its role in regulating hypertension
- Prof. Dario Alessi
-
20. The hyperphosphorylation of tau and Alzheimer's disease
- Prof. Michel Goedert
- Protein Kinases as Targets for the Development of Anti-Cancer Drugs
-
21. PI3K/AKT signaling in cancer
- Prof. Neal Rosen
-
22. RAS and RAF signaling in melanoma: biology and therapies
- Prof. Richard Marais
-
23. The mTOR kinase as a target for anti-cancer drugs
- Prof. David Sabatini
- Archived Lectures *These may not cover the latest advances in the field
-
25. AMP-activated protein kinase: regulating cellular and whole body energy balance
- Prof. Grahame Hardie
Printable Handouts
Navigable Slide Index
- Introduction
- Oncogenic transformation by v-Src
- SH2 domains of cytoplasmic tyrosine kinases
- Interaction between tyrosine kinase receptors
- Signaling through regulated protein interactions
- Interaction domains in cellular regulation
- Features of interaction domains
- Design of SH2 domain signaling proteins
- SH2 binding sites on the beta-PDGF receptor
- Specific SH2 phosphopeptide interaction
- SH2 domain selectivity
- SH2 domain specificity (1)
- SH2 domain specificity (2)
- WT and mutant SH2 domain structure
- Recognition motifs in signal transduction
- SH3 domains have a modular structure
- SH3 domain versatility
- Signaling from the T cell antigen receptor
- The Gads SH2/SH3 adaptor links LAT to SLP-76
- Mode of peptide recognition by Gad SH3-C
- Interaction domains are adaptable
- Mechanisms of interaction surfaces for signaling
- Functions of interaction domains (1)
- Physiological functions of interaction domains
- Functions of interaction domains (2)
- Interactions regulated by Ser/Thr phosphorylation
- Phosphorylation and ubiquitin ligase complex (1)
- Phosphorylation and ubiquitin ligase complex (2)
- Cdc4 WD40 domain
- Mechanism of Sic1 degradation
- Activation of S-phase CDK
- 14-3-3 proteins bind sites as dimers
- Regulation of protein function by 14-3-3 binding
- Functional 14-3-3 binding
- Physiological functions of interaction domains (1)
- Adaptors couple receptors to intracellular targets
- Signaling pathway through an adaptor protein
- PTB domain proteins serve as scaffolds
- Different receptors use signaling adaptors
- Physiological functions of interaction domains (2)
- Re-iterated use of interaction domains
- Physiological functions of interaction domains (3)
- Interaction domains control Src function
- Interaction domains can be combined
- The Abl SH3 domain
- Rewiring cellular signaling by pathogenic proteins
- Nck adaptors in cytoskeletal regulation
- Enteropathogenic E.Coli (EPEC)
- EPEC manipulates the cell cytoskeleton via Nck
- Nck1 and Nck2 in pedestal formation
- Oncogenic rewiring
- Rewiring using chimaric adaptor proteins
- Therapeutic possibilities of protein interactions
- Conclusion
Topics Covered
- Mechanisms through which protein interactions modules, such as the SH2 domain, mediate the activation of specific signaling pathways by normal and oncogenic tyrosine kinases
- The biological functions and biochemical properties of interaction domains including their roles in controlling protein localization, in recognition of post-translational modifications, in forming multi-protein complexes, and in regulating enzymatic function
- The versatility of interaction domains, their potential utility in the evolution of new signaling pathways, and their exploitation by pathogenic proteins to rewire cellular behavior
Links
Series:
Categories:
Talk Citation
Pawson, T. (2010, December 14). Modular protein-protein interactions provide a general mechanism to organize dynamic cellular systems [Video file]. In The Biomedical & Life Sciences Collection, Henry Stewart Talks. Retrieved January 15, 2025, from https://doi.org/10.69645/GVBD1102.Export Citation (RIS)
Publication History
Financial Disclosures
- Prof. Tony Pawson has not informed HSTalks of any commercial/financial relationship that it is appropriate to disclose.
Modular protein-protein interactions provide a general mechanism to organize dynamic cellular systems
A selection of talks on Biochemistry
Hide