On Sunday, April 20th 2025, starting 8:30am GMT, there will be maintenance work that will involve the website being unavailable during parts of the day. We apologize for any inconvenience this may cause and appreciate your understanding.
We noted you are experiencing viewing problems
-
Check with your IT department that JWPlatform, JWPlayer and Amazon AWS & CloudFront are not being blocked by your network. The relevant domains are *.jwplatform.com, *.jwpsrv.com, *.jwpcdn.com, jwpltx.com, jwpsrv.a.ssl.fastly.net, *.amazonaws.com and *.cloudfront.net. The relevant ports are 80 and 443.
-
Check the following talk links to see which ones work correctly:
Auto Mode
HTTP Progressive Download Send us your results from the above test links at access@hstalks.com and we will contact you with further advice on troubleshooting your viewing problems. -
No luck yet? More tips for troubleshooting viewing issues
-
Contact HST Support access@hstalks.com
-
Please review our troubleshooting guide for tips and advice on resolving your viewing problems.
-
For additional help, please don't hesitate to contact HST support access@hstalks.com
We hope you have enjoyed this limited-length demo
This is a limited length demo talk; you may
login or
review methods of
obtaining more access.
Printable Handouts
Navigable Slide Index
- Introduction
- The mitotic spindle of animal cells
- Microtubule function throughout cell cycle
- Microtubules are highly dynamic during mitosis
- Dynamics of an animal cell spindle
- A plant cell spindle
- Spindle questions
- Models of spindle assembly (1)
- The notion of cytoplasmic state
- Models of spindle assembly (2)
- The frog egg extract system
- Global regulation of microtubule dynamics
- CDK1 and microtubule tip binding proteins network
- Local microtubule nucleation around chromosomes
- Local stabilization around chromosomes
- Bipolarity and metaphase plate assembly
- Signaling pathway for the microtubule system
- Model of the Ran system
- Calculating spatio-temporal evolution
- Multiple gradients of signaling molecules
- Short and long range effects of signaling gradients
- TPX2 dependent local microtubule nucleation
- CDK11 required for centrosomal spindle bipolarity
- How microtubules organize into a bipolar array?
- Motor-dependent bipolar spindle assembly
- Spindle self-organization with centrosomes
- Tubulin fluxes from equator to poles
- Regulation of spindle length
- Describing such a complex dynamic system
- A systems approach to the spindle problem
- Oligomeric motors and MTs in the test tube
- How to build simulations
- Microtubule-motors self organized patterns
- Mixture of plus and minus end motors
- What remains to be done?
- The Importance of scale
- Symmetry breaking and spindle assembly
- Spindle assembly and the emergence of "function"
- Kant's concept
- Acknowledgements
Topics Covered
- Mitosis
- Spindle assembly
- Self-organization
- Chromosome segregation
- Microtubule dynamics
- Collective behavior of microtubule-motors systems
- Reaction diffusion processes
- Gradients of microtubule dynamics and nucleation
- The Ran system in mitosis
Talk Citation
Karsenti, E. (2009, April 30). Bipolar spindle assembly [Video file]. In The Biomedical & Life Sciences Collection, Henry Stewart Talks. Retrieved April 15, 2025, from https://doi.org/10.69645/BXJU9276.Export Citation (RIS)
Publication History
- Published on April 30, 2009
Financial Disclosures
- Dr. Eric Karsenti has not informed HSTalks of any commercial/financial relationship that it is appropriate to disclose.