Skip to main content
Mobile
  • Finance, Accounting & Economics
  • Global Business Management
  • Management, Leadership & Organisation
  • Marketing & Sales
  • Strategy
  • Technology & Operations
HS Talks HS Talks
Subjects  
Search
  • Notifications
    Notifications

    No current notifications.

  • User
    Welcome Guest
    You have Limited Access The Business & Management Collection
    Login
    Get Assistance
    Login
    Forgot your password?
    Login via your organisation
    Login via Organisation
    Get Assistance
Finance, Accounting & Economics
Global Business Management
Management, Leadership & Organisation
Marketing & Sales
Strategy
Technology & Operations
You currently don't have access to this journal. Request access now.
Practice paper

Strategies to mitigate hallucinations in large language models

Ranjeeta Bhattacharya
Applied Marketing Analytics: The Peer-Reviewed Journal, 10 (1), 62-67 (2024)
https://doi.org/10.69554/NXXB8234

Abstract

In the world of enterprise-level applications, the construction and utilisation of large language models (LLMs) carry a paramount significance, accompanied by the crucial task of mitigating hallucinations. These instances of generating factually inaccurate information pose challenges during both the initial development phase of LLMs and the subsequent refinement process through prompt engineering. This paper delves into a variety of approaches such as retrieval augmented generation, advanced prompting methodologies, harnessing the power of knowledge graphs, construction of entirely new LLMs from scratch etc, aimed at alleviating these challenges. The paper also underscores the indispensable role of human oversight and user education in addressing this evolving issue. As the field continues to evolve, the importance of continuous vigilance and adaptation cannot be overstated, with a focus on refining strategies to effectively combat hallucinations within LLMs.

Keywords: LLM; large language model; hallucination; prompt engineering; RAG

The full article is available to subscribers to the journal.

Already a subscriber? Login or review other options.

Author's Biography

Ranjeeta Bhattacharya is a senior data scientist within the AI Hub wing of BNY Mellon, the world's largest custodian bank. As a machine learning practitioner, her work is intensely data-driven and requires her to utilise her cognitive ability to think through complex use cases and support end-to-end AI/ML solutions from the inception phase up to deployment. Ranjeeta's total experience as a data science/technology consultant spans over 15 years where she has performed multi-faceted techno-functional roles in the capacity of software developer, solution designer, technical analyst, delivery manager, project manager, etc for IT Consulting Fortune 500 companies across the globe. Ranjeeta holds an undergraduate degree in computer science and engineering, a master's degree in data science, and she has multiple certifications and publications in these domains, demonstrating her commitment to continuous learning and knowledge sharing.

Citation

Bhattacharya, Ranjeeta (2024, June 1). Strategies to mitigate hallucinations in large language models. In the Applied Marketing Analytics: The Peer-Reviewed Journal, Volume 10, Issue 1. https://doi.org/10.69554/NXXB8234.

Options

  • Download PDF
  • Share this page
    Share This Article
    Messaging
    • Outlook
    • Gmail
    • Yahoo!
    • WhatsApp
    Social
    • Facebook
    • X
    • LinkedIn
    • VKontakte
    Permalink
cover image, Applied Marketing Analytics: The Peer-Reviewed Journal
Applied Marketing Analytics: The Peer-Reviewed Journal
Volume 10 / Issue 1
© Henry Stewart
Publications LLP

The Business & Management Collection

  • ISSN: 2059-7177
  • Contact Us
  • Request Free Trial
  • Recommend to Your Librarian
  • Subscription Information
  • Match Content
  • Share This Collection
  • Embed Options
  • View Quick Start Guide
  • Accessibility

Categories

  • Finance, Accounting & Economics
  • Global Business Management
  • Management, Leadership & Organisation
  • Marketing & Sales
  • Strategy
  • Technology & Operations

Librarian Information

  • General Information
  • MARC Records
  • Discovery Services
  • Onsite & Offsite Access
  • Federated (Shibboleth) Access
  • Usage Statistics
  • Promotional Materials
  • Testimonials

About Us

  • About HSTalks
  • Editors
  • Contact Information
  • About the Journals

HSTalks Home

Follow Us On:

HS Talks
  • Site Requirements
  • Copyright & Permissions
  • Terms
  • Privacy
  • Sitemap
© Copyright Henry Stewart Talks Ltd

Personal Account Required

To use this function, you need to be signed in with a personal account.

If you already have a personal account, please login here.

Otherwise you may sign up now for a personal account.

HS Talks

Cookies and Privacy

We use cookies, and similar tools, to improve the way this site functions, to track browsing patterns and enable marketing. For more information read our cookie policy and privacy policy.

Cookie Settings

How Cookies Are Used

Cookies are of the following types:

  • Essential to make the site function.
  • Used to analyse and improve visitor experience.

For more information see our Cookie Policy.

Some types of cookies can be disabled by you but doing so may adversely affect functionality. Please see below:

(always on)

If you block these cookies or set alerts in your browser parts of the website will not work.

Cookies that provide enhanced functionality and personalisation. If not allowed functionality may be impaired.

Cookies that count and track visits and on website activity enabling us to organise the website to optimise the experience of users. They may be blocked without immediate adverse effect.