Skip to main content
Mobile
  • Finance, Accounting & Economics
  • Global Business Management
  • Management, Leadership & Organisation
  • Marketing & Sales
  • Strategy
  • Technology & Operations
HS Talks HS Talks
Subjects  
Search
  • Notifications
    Notifications

    No current notifications.

  • User
    Welcome Guest
    You have Limited Access The Business & Management Collection
    Login
    Get Assistance
    Login
    Forgot your password?
    Login via your organisation
    Login via Organisation
    Get Assistance
Finance, Accounting & Economics
Global Business Management
Management, Leadership & Organisation
Marketing & Sales
Strategy
Technology & Operations
Research paper

Integrating datasets: Segmenting the fashion market using risk aversion

Martin Paul Block
Applied Marketing Analytics: The Peer-Reviewed Journal, 8 (3), 302-313 (2023)
https://doi.org/10.69554/HYSA6653

Abstract

A marketing segmentation can often be improved with the addition of variables which are often found on different datasets. Using a classification regression tree (CRT) methodology with predictor variables shared across datasets, the terminal node identification equations can be used to estimate the variables on a different dataset. The use of CRT allows the inclusion of categorical variables, such as marital status and ethnicity, as well as continuous variables, such as age and education. Three datasets were integrated and a chi-square automatic interaction detector (CHAID) tree is then used to segment the women's clothing fashion market by demographic and reward and aversion variables. The analysis suggests possible marketing strategies targeting high-spending segments as well as media strategies.

Keywords: data integration; fashion; segmentation; decision tree

The full article is available to subscribers to the journal.

Already a subscriber? Login or review other options.

Author's Biography

Martin Paul Block Professor Emeritus, Integrated Marketing Communications, Northwestern University and Executive Director of the Retail Analytics Council. Martin is co-author of ‘Understanding China's Digital Generation, Media Generations: Media Allocation in a Consumer-Controlled Marketplace’, ‘Retail Communities: Customer Driven Retailing, Analyzing Sales Promotion, Business-to-Business Market Research’ and ‘Cable Advertising: New Ways to New Business’. He has also been published in many academic research journals and trade publications and is the author of several book chapters. His PhD is from Michigan State University.

Citation

Block, Martin Paul (2023, January 1). Integrating datasets: Segmenting the fashion market using risk aversion. In the Applied Marketing Analytics: The Peer-Reviewed Journal, Volume 8, Issue 3. https://doi.org/10.69554/HYSA6653.

Options

  • Download PDF
  • Share this page
    Share This Article
    Messaging
    • Outlook
    • Gmail
    • Yahoo!
    • WhatsApp
    Social
    • Facebook
    • X
    • LinkedIn
    • VKontakte
    Permalink
cover image, Applied Marketing Analytics: The Peer-Reviewed Journal
Applied Marketing Analytics: The Peer-Reviewed Journal
Volume 8 / Issue 3
© Henry Stewart
Publications LLP

The Business & Management Collection

  • ISSN: 2059-7177
  • Contact Us
  • Request Free Trial
  • Recommend to Your Librarian
  • Subscription Information
  • Match Content
  • Share This Collection
  • Embed Options
  • View Quick Start Guide
  • Accessibility

Categories

  • Finance, Accounting & Economics
  • Global Business Management
  • Management, Leadership & Organisation
  • Marketing & Sales
  • Strategy
  • Technology & Operations

Librarian Information

  • General Information
  • MARC Records
  • Discovery Services
  • Onsite & Offsite Access
  • Federated (Shibboleth) Access
  • Usage Statistics
  • Promotional Materials
  • Testimonials

About Us

  • About HSTalks
  • Editors
  • Contact Information
  • About the Journals

HSTalks Home

Follow Us On:

HS Talks
  • Site Requirements
  • Copyright & Permissions
  • Terms
  • Privacy
  • Sitemap
© Copyright Henry Stewart Talks Ltd

Personal Account Required

To use this function, you need to be signed in with a personal account.

If you already have a personal account, please login here.

Otherwise you may sign up now for a personal account.

HS Talks

Cookies and Privacy

We use cookies, and similar tools, to improve the way this site functions, to track browsing patterns and enable marketing. For more information read our cookie policy and privacy policy.

Cookie Settings

How Cookies Are Used

Cookies are of the following types:

  • Essential to make the site function.
  • Used to analyse and improve visitor experience.

For more information see our Cookie Policy.

Some types of cookies can be disabled by you but doing so may adversely affect functionality. Please see below:

(always on)

If you block these cookies or set alerts in your browser parts of the website will not work.

Cookies that provide enhanced functionality and personalisation. If not allowed functionality may be impaired.

Cookies that count and track visits and on website activity enabling us to organise the website to optimise the experience of users. They may be blocked without immediate adverse effect.