The Development of the Peripheral Nervous System in the Fruit Fly *Drosophila*

Prof. Hugo J. Bellen

Peripheral senses

- Sight: eyes
- Smell: olfactory receptors in antenna (nose)
- Taste: taste receptors in labia and legs (tongue)
- Hearing: Johnston organ in antenna (ear)
- Proprioception: external sensory organs covering entire body (skin)

Sensory organs of an adult Drosophila

The screen versions of these slides have full details of copyright and acknowledgements.
The Development of the Peripheral Nervous System in the Fruit Fly *Drosophila*

Prof. Hugo J. Bellen

Hearing: Johnston organ and chordotonal organs

- **cd**: chordotonal organ
d- **sc**: sensillum chorda
- **bb**: basiconic sensillum
- **cf**: chemosensory hair

Hearing in *Drosophila* courtship

- **pulse song**
- **sine song**

External sensory organs: a model to unravel the development of the PNS

Adapted from Lai and Orgogozo, 2004

The screen versions of these slides have full details of copyright and acknowledgements.
The Development of the Peripheral Nervous System in the Fruit Fly *Drosophila*
Prof. Hugo J. Bellen

Mechanosensory organs
- Microchaetae
- Macrochaetae
- Stout and slender bristles of the wing margin

Chemosensory organs
- Recurved bristles of the wing margin
- Chemosensory hairs of the proboscis and tarsus
- Respond to sugars or salts

Sensory organ development
- Each sensory organ is composed of various cell types that are clonally related
- The mother cell of each organ is called the sensory organ precursor (SOP)
- SOP gives rise to neuron(s) and support cells via asymmetric divisions
The Development of the Peripheral Nervous System in the Fruit Fly *Drosophila*

Prof. Hugo J. Bellen

Early development of PNS organs

- Controlled by proneural proteins
- Proneural proteins are basic helix loop helix (bHLH) proteins
- Proneural proteins are expressed in small patches of ectodermal cells: proneural clusters
- They are necessary and sufficient to form PNS organs
- They not only specify the neuronal lineage but also the subtype of PNS organ
- There are 5 proneural proteins in flies: Scute, Achaete, Amos, Lethal of Scute, and Atonal

bHLH proneural genes in PNS

- *achaete* and *scute*: external sensory organs, some multidendritic organs
- *atona*: chordotonal organs, photoreceptors, one type of olfactory hair
- *amos*: some multidendritic organs, two types of olfactory hair
- *daughterless*: necessary for almost all types, as a partner with others

Bertrand et al., 2002

The screen versions of these slides have full details of copyright and acknowledgements
The Development of the Peripheral Nervous System in the Fruit Fly *Drosophila*

Prof. Hugo J. Bellen

Proneural proteins and Notch signaling during sensory bristle development

- **Lateral inhibition**
- **Asymmetric division**

Notch signaling in the specification of the SOPs

Presumptive SOP

Ectodermal Cell

- Proneural
- \(E(spl) \)
- \(\Delta \)
- \(\text{Notch} \)

Senseless is essential for proper SOP formation

Presumptive SOP

Ectodermal Cell

- Senseless
- Proneural
- \(E(spl) \)
- \(\Delta \)
- \(\text{Notch} \)

The screen versions of these slides have full details of copyright and acknowledgements
The Development of the Peripheral Nervous System in the Fruit Fly *Drosophila*

Prof. Hugo J. Bellen

Loss of external sensory organs in a sens clone

Sens zinc fingers are highly conserved

Loss of Scute expression in sens mutant clones in the wing disc

Nolo et al., 2000 in senseless clones (dark)
The Development of the Peripheral Nervous System in the Fruit Fly *Drosophila*

Prof. Hugo J. Bellen

Ectopic expression of senseless induces PNS and proneural gene expression

![Image of senseless expression](image1.png)

Senseless synergizes with proneural proteins

Ectopic Senseless OR Ectopic Scute

Ectopic Senseless AND Ectopic Scute

![Image of Senseless expression](image2.png)

achaete promoter-luciferase reporter construct and S2 cell transcription assay

Expression construct

Reporter construct

Control vector

S2 cells

Firefly Luciferase

Renilla Luciferase

![Image of luciferase assay](image3.png)
The Development of the Peripheral Nervous System in the Fruit Fly *Drosophila*

Prof. Hugo J. Bellen

Low levels of Sens repress ac transcription in a DNA-binding-dependent manner

![Graph showing repressive effect of Sens on ac transcription](image)

Senseless summary

- Zn-finger transcription factor (4 C2H2 domains)
- Nuclear protein expressed in SOP I and SOP II
- Required to specify some SOPs in adult PNS
- Directly dependent on proneural gene expression
- Induces proneural gene expression when ectopically expressed
- Represses PNS development at low concentrations via binding of DNA
- Promotes PNS development at high concentration via synergism and binding with proneural proteins
- Is necessary and sufficient to form pns

The screen versions of these slides have full details of copyright and acknowledgements
Asymmetric divisions in the adult external sensory lineages (bristles)

- Extrinsic (Notch signaling)
- Intrinsic (fate determinants)

Sensory lineage in WT and Notch mutations

Asymmetric localization of cell fate determinants

The screen versions of these slides have full details of copyright and acknowledgements.
Asymmetric localization of cell fate determinants

Sensory lineage in WT and numb mutations

Wild-type Loss of numb Gain of numb
= Gain of Notch = Loss of Notch

Sensory lineage in WT and neuralized mutations

Wild-type Loss of neur Gain of neur
= Loss of Notch = Gain of Notch
Differentiation of ESO are dependent on:

- Proneural proteins that specify subtype
- Neural type selectors: cut, pox-neuro
- Pan-neuronal genes (asense, deadpan, scratch, ...)
- Genes with specific functions in some of the SOP progeny (prospero, Dpax-2, Hairfess, Sui(?) Bar, ...)

Loss of Notch signaling results in aberrant bristle development

Lateral inhibition
Asymmetric division
Loss of Notch

Notch signaling regulates multiple processes during animal development in vertebrates

- Cell fate decision: nervous system, blood, vasculature, pancreas
- Asymmetric divisions: neurogenesis, myogenesis
- Maintenance of undifferentiated state: hematopoietic, muscle and neural stem cells
- Differentiation: skin, oligodendrocytes, bone
Notch signaling is aberrantly regulated in a variety of human diseases

- Developmental disorders: bone, blood vessels, liver, heart, face, eye
- Cancer: T-Cell leukemia, breast cancer, lung cancer
- Cerebrovascular dementia: CADASIL
- Demyelinating disorders

An adult mosaic screen to find novel genes involved in the Notch pathway

- Brand & Perrimon (1993)
- Xu & Rubin (1993)

Increased number of pIIb progeny in mutant clones

- Jafar-Nejad et al., 2005
sec15 encodes a component of the exocyst

Lipshutz & Mostov, 2002

WT sec15

Is sec15 required for the signal sending or receiving cell?

Jafar-Nejad et al, 2005

Localization of all intrinsic determinants is normal in sec15 mutant clones

WT sec15

sec15 encodes a component of the exocyst

Is sec15 required for the signal sending or receiving cell?
Sec15 functions upstream of the S3 cleavage of Notch

- Sca>NEXT
- sec15+
- sec15−

Similarities between sanpodo and sec15 phenotypes

- Spdo is a four-pass transmembrane protein
- Its loss of function causes pIIa to pIIb transformation in embryonic PNS
- Functions upstream of the S3 cleavage of Notch but downstream of Numb

O'Connor & Skeath, 2003
Skeath & Doe, 1998
Dye et al., 1998

Spdo and Sec15 function in the same pathway in bristle development

- spdo−
- spdo− sec15−
The Development of the Peripheral Nervous System in the Fruit Fly *Drosophila*
Prof. Hugo J. Bellen

Spdo is upregulated and mislocalized in sec15 pI cells

- anterior arrow

- z section
- xy section

- WT
- sec15
- WT
- sec15

Jafar-Nejad et al., 2005

Spdo is upregulated and mislocalized in sec15 pII cells

- anterior arrow

- z section
- xy section

- WT
- sec15
- WT
- sec15

Jafar-Nejad et al., 2005

Spdo and Delta colocalize in WT and sec15 SOPs

- anterior arrow

- z section
- xy section

- WT
- sec15
- WT
- sec15

Jafar-Nejad et al., 2005

The screen versions of these slides have full details of copyright and acknowledgements
The Development of the Peripheral Nervous System in the Fruit Fly *Drosophila*

Prof. Hugo J. Bellen

- Endocytosed Delta colocalizes with Spdo in WT and sec153 SOPs
- Note the basal localization of the endocytosed Delta in mutant cells

Rab11 is strongly upregulated in the apical areas of sec15 clones

A model for Sec15 function

The screen versions of these slides have full details of copyright and acknowledgements
The Development of the Peripheral Nervous System in the Fruit Fly *Drosophila*
Prof. Hugo J. Bellen

Acknowledgements

Senseless:
Melih Acar
Hamed Jafar-Nejad
Riitta Nolo

Sec15:
Hamed Jafar-Nejad
Hillary Andrews
Sunil Mehta
Melih Acar
Vafa Bayat