The Protein C-Thrombomodulin Mechanism:
Regulating Multiple Biological Systems
Edward M. Conway, MD, PhD
Center for Transgene Technology and Gene Therapy
Flanders Interuniversity Institute for Biotechnology (VIB)
University of Leuven (KUL), Leuven, Belgium

Reasons to think about vascular disease
- Pulmonary emboli: 100,000 deaths/yr
- Coronary artery disease: 1 million deaths/yr
- Strokes: 0.5 million deaths/yr
- Infections/inflammation: 15 million deaths/yr
- Cancer-related: 14 million deaths/yr
The Protein C-Thrombomodulin Mechanism: Regulating Multiple Biological Systems
Dr. Edward M. Conway

The inert vessel wall...

Questions
- Mechanisms to protect the vessel wall
- Links between coagulation and inflammation
- Regulation - spatially and temporally
The Protein C-Thrombomodulin Mechanism: Regulating Multiple Biological Systems
Dr. Edward M. Conway

Outline

- The protein C-thrombomodulin mechanism
- Links between coagulation, inflammation, innate immunity and cell proliferation
- Physiologic relevance
- Research directions

Coagulation pathway

Vessel injury or endotoxin → TF → VIIa → IX → Xa → IXa → VIIIa → Fibrinogen → Fibrin

Discovery of protein C (PC)

by
Johan Stenflo, 1975

Protein C (PC) → Thrombin → Activated protein C (APC) → FV/Va → FVIII/VIIIa → AT III
The Protein C-Thrombomodulin Mechanism: Regulating Multiple Biological Systems
Dr. Edward M. Conway

Protein C (PC)
- Vitamin K-dependent
- Synthesized mostly in liver
- 461 amino acid residue precursor
- Plasma level 3-5 mg/ml
- Apparent molecular weight 62 kDa
- 3 structural domains

Structure of PC
- 9 Gla residues
- Calcium-dependent interactions with cell membrane surfaces and with EPCR and TM
- EGF1 with site for factor Va and VIIIa
- Calcium-dependent activation of PC by thrombin-TM

Extrahepatic sites of PC synthesis
- Renal tubular epithelial cells
- Prostate
- Testis
- Bronchial epithelial cells
- Neurons in brain
The Protein C-Thrombomodulin Mechanism: Regulating Multiple Biological Systems
Dr. Edward M. Conway

Major players: TM, PF4, EPCR, thrombin, PC

Thrombomodulin (TM) and protein C activation

APC promotes fibrinolysis
The Protein C-Thrombomodulin Mechanism: Regulating Multiple Biological Systems
Dr. Edward M. Conway

16

Rapid "onkoff" nature of PC activation

PC activation

Cytosol

17

Physiologic importance of PC (1)

- PC deficiency
 - Thrombotic tendency with 50% levels
 - >100 mutations - type I most frequent
 - Type II mutations - less frequent
- Heterozygous PC deficiency
 - DVT, PE most common
 - Occasionally unusual locations of thrombosis
 - Variable expression of thrombotic phenotype
 - With AT deficiency - increased severity

18

Physiologic importance of PC (2)

- Homozygous PC deficiency
 - Neonatal - life-threatening diffuse thrombosis
 - Venous and arterial
 - "Purpura fulminans"
- Acquired PC deficiency
 - Warfarin-induced skin necrosis
 - More frequent in patients with PC or PS deficiency
 - Liver disease, sepsis, DIC
The Protein C-Thrombomodulin Mechanism: Regulating Multiple Biological Systems
Dr. Edward M. Conway

Resistance to APC: factor V_{Leiden}

Factor V_{Leiden}
- Allelic frequency 2-15%
- Geographic variability
- Thrombotic risk
 - 5-10 fold increase in heterozygous deficiency
 - 50-100 fold increase in homozygous patients
- Transgenic mouse models

Benefits of factor V_{Leiden}
- Less bleeding in peripartum period
- Less bleeding in patients with hemophilia
- Decreased sepsis-related mortality
 - Due to higher levels of APC?
The Protein C-Thrombomodulin Mechanism: Regulating Multiple Biological Systems
Dr. Edward M. Conway

The PC-TM system and inflammation

- Inflammatory response in E. coli-induced sepsis
 - Protective: PC, APC, PS
 - Exacerbates: anti-PC Ab, C4bBP

The PC-TM system and inflammation

- PC +/- mice
 - Increase sensitivity to sepsis
 - Short survival, elevated cytokines, hypotensive
- Administration of APC in rodent models
 - Suppresses TNF and iNOS
 - Prevents neutrophil infiltration
 - Prevents hypotension

Anti-inflammatory properties of APC

- Inhibits PMN activation
- Decreases PMN elastase and ROS release
- Blocks PMN interactions with selectins
- Decreases tissue factor expression
- Prevents cytokine (TNF) release from ECs and monocytes
The Protein C-Thrombomodulin Mechanism: Regulating Multiple Biological Systems

Dr. Edward M. Conway

Anti-inflammator properties of APC-EPCR

- Increased EPCR
- Increased Bcl2
- Decreased A20, IAP
- Decreased p53

Vasculoprotective properties of APC-EPCR

- Increased Vascular integrity
- Increased permeability

Therapeutic importance of APC

- Decreased mortality in patients with severe sepsis
 - 6.1% reduction in 28-day all cause mortality (PROWESS)
 - More rapid resolution of hemostatic, cardiovascular and respiratory failure
 - Adverse effect - non-significant increased bleeding
 - Mechanisms - probably multiple
The Protein C-Thrombomodulin Mechanism:
Regulating Multiple Biological Systems
Dr. Edward M. Conway

APC versus PC

- Is PC an effective treatment for sepsis?
 - Controversial
 - Unresolved
 - Anecdotal success in meningococcemia and purpura fulminans
 - Needs further study

Thrombomodulin and the thrombin-activatable fibrinolysis inhibitor (TAFI)

Role of C-type lectinlike domains

The screen versions of these slides have full details of copyright and acknowledgements
Deletion of the lectin-like domain of thrombomodulin

Increased sensitivity of TM^{LeD/LeD} mice to LPS

Higher serum cytokines in TM^{LeD/LeD} mice after low dose LPS
Increased PMN (arrows) accumulation in TM^{LeD/LeD} lungs

Increased myocardial infarcts after ischemia-reperfusion (I/R)

Increased PMN adhesion to TM^{LeD/LeD} ECs
The Protein C-Thrombomodulin Mechanism: Regulating Multiple Biological Systems
Dr. Edward M. Conway

Upregulated ICAM, VCAM and pERK_{1/2} endothelial cells of TM_{LeD/LeD} mice (Western immunoblots)

<table>
<thead>
<tr>
<th>Mice</th>
<th>WT</th>
<th>LeD</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPS</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

- ICAM-1
- VCAM-1
- pERK_{1/2}
- ERK_{1/2}

Soluble thrombomodulin (sTM)
- sTM in plasma and urine
- From proteolytic degradation of membrane TM
- Comprised of several fragments (EGF 1-6, lectin domain)
- Normal plasma levels 3-50 ng/ml
- Increased with vascular damage
- Inverse correlation of plasma levels with new onset coronary heart disease (controversial)

TM_{lec155} suppresses leukocyte adhesion to endothelial cells

<table>
<thead>
<tr>
<th>Human TM<sub>lec155</sub> (mg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>40</td>
</tr>
</tbody>
</table>

of PMNs adhering to endothelial cells/cm²
The Protein C-Thrombomodulin Mechanism: Regulating Multiple Biological Systems
Dr. Edward M. Conway

TM_{lec155} suppresses TNF-induced activation of ERK_{1/2} in HUVECs

Co-ordinate action of TM and APC-EPCR

HMGB1
High mobility group box 1 = amphoterin
The Protein C-Thrombomodulin Mechanism: Regulating Multiple Biological Systems
Dr. Edward M. Conway

N-terminal domain of TM: a natural inhibitor of HMGB1

- Critical cofactor for thrombin-mediated generation of APC
- TM sequesters thrombin, i.e., shifts its substrate specificity
 - Prevents thrombin from exerting pro-coagulant and pro-inflammatory functions (e.g., inducing iNOS, cytokine release, leukocyte chemotaxis, complement activation)
- Critical cofactor for generation of TAFIa
- Anti-inflammatory effects of N-terminal lectin-like domain
 - Via HMGB1 and other partner proteins

Summary of role of TM in inflammation

Role of TM in cancer

- Many tumors express TM
- Inverse correlation between TM and metastasis/malignancy
- Lectin-like domain has tumor suppressor properties
Regulation of TM

<table>
<thead>
<tr>
<th>Up-regulating factors</th>
<th>Down-regulating factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrombin</td>
<td>Hypoxia</td>
</tr>
<tr>
<td>VEGF</td>
<td>Oxidized LDL</td>
</tr>
<tr>
<td>Histamine, retinoic acid</td>
<td>TGF-beta</td>
</tr>
<tr>
<td>Heat shock</td>
<td>TNF-α, IL-1β</td>
</tr>
<tr>
<td>Statins</td>
<td>Endotoxin</td>
</tr>
<tr>
<td>TNF-α, IL-1β (in macrophages)</td>
<td>Oxidation of Met388</td>
</tr>
</tbody>
</table>

Regulation of EPCR

- Downregulated by LPS, IL-1β, TNFα
- Soluble form (sEPCR) by MMP cleavage
 - Increased in sepsis
 - Complexes with proteinase-3 (PR3) and interferes with neutrophil-endothelial cell interactions
 - APC-sEPCR may traffic to PMN nucleus

TM and proteinase activated receptors

- Thrombin
- PAR1
- Gi
- pERK1/2, NFκB
TM mutations and disease

- Transgenic TM^{pro/pro} mice - hypercoagulable
- Human TM gene mutations
 - A455V and -1208-1209TTdelTT variants
 - Increase risk for coronary heart disease
 - Ala25Thr substitution - risk for ischemic heart disease

PC-TM system in development

- TM^{-/-} mice - embryonic lethal E7.5-8.5
- EPCR^{-/-} mice - embryonic lethal E10.0
- TM and EPCR expressed by giant trophoblasts
- Low TF rescues TM^{-/-} and EPCR^{-/-} embryos
- Endothelial TM critical for survival

Based on Isermann, et al., Nature Medicine, 2003, 331-337
The Protein C-Thrombomodulin Mechanism: Regulating Multiple Biological Systems
Dr. Edward M. Conway

Pulling it together...

Local response to injury

Protection of adjacent tissue

The screen versions of these slides have full details of copyright and acknowledgements
The Protein C-Thrombomodulin Mechanism: Regulating Multiple Biological Systems
Dr. Edward M. Conway

Future directions

Therapeutics of PC/APC

- Sepsis
- Thrombo-embolic disease
- Ischemia-reperfusion injury
- Stroke
- Lung inflammation
- "Safer" forms of APC

Therapeutics of EPCR

- Soluble EPCR??
The Protein C-Thrombomodulin Mechanism: Regulating Multiple Biological Systems
Dr. Edward M. Conway

Therapeutics of thrombomodulin

- EGF1-6 for DIC
- Lectin-like domain of TM for sepsis
- Other

Diagnostic insights

- Inflammation/infection
- Coagulation
- Innate immunity
- Neoplasia

Potential impact

- New insights into mechanisms underlying disorders of coagulation, inflammation, angiogenesis, neoplasia, and immunity
- Novel therapeutic approaches

The screen versions of these slides have full details of copyright and acknowledgements
...We need to do more research...