The First Human Retroviruses: The Human T Lymphotropic Viruses (HTLVs)

Prof. William W. Hall
School of Medicine and Medical Science, University College Dublin, Ireland

Human retroviruses

Delta retroviruses
- Human T lymphotropic virus, type I (HTLV-I)
- Human T lymphotropic virus, type II (HTLV-II)
- Simian T lymphotropic viruses (STLVs)
- Bovine leukemia virus (BLV)

Lentiviruses
- Human immunodeficiency virus, type 1 (HIV-1)
- Human immunodeficiency virus, type 2 (HIV-2)

Endemic areas of HTLV-I infection
The First Human Retroviruses:
The Human T Lymphotropic Viruses (HTLVs)
Prof. William W. Hall

HTLV-I: associated clinical disorders

Lymphoproliferative disorders
• Adult T cell leukaemia/lymphoma (ATLL)

Inflammatory disorders
• HTLV-I associated myelopathy/tropical spastic paraparesis (HAM/TSP)
• Arthopathy
• Uveitis
• Alveolitis

HAM/TSP
• Onset usually in 3rd to 4th decade of life, more common in females
• Insidious onset with initial symptoms of stiffness, weakness of lower extremities and frequency and urgency of urination
• Physical findings include weakness of the legs with spasticity, hyperreflexia and extensor plantar responses
• Associated with high HTLV-I proviral loads and certain HLA backgrounds

Adult T cell leukemia/lymphoma (ATLL) clinical/epidemiological features
• Spectrum of T cell malignancies: ranging from indolent (smouldering, chronic) to aggressive (acute, lymphomatous) forms
• Majority of cases are associated with infection at or around the time of birth, suggesting that infection of cells of the developing immune system may be important
• Prolonged incubation period of 20-50 years supporting multiple events in the transformation process
• Aggressive forms of ATLL have poor responses to therapeutic intervention; In addition patients are functionally immunocompromised and susceptible to a range of opportunistic infections e.g., Pneumocystis jiroveci which are associated with impaired T cell responses
Adult T cell leukemia/lymphoma (ATLL) pathological and immunological features

- **Acute leukemia** - high grade leukemia with typical “flower cells” in peripheral blood; Extensive visceral and cutaneous infiltrates; Leukemic cells express increased levels of the IL-2R and a range of other activation markers
- **Lymphomatous form** - extensive infiltration in mesentery, liver, spleen and skin; On occasions pan-organ infiltration is evident (lungs, kidneys, meninges)
- Histologically, these are large diffuse T cell lymphomas with numerous cytological abnormalities, generally CD4+; However, other phenotypes (CD4-CD8- double negative, CD8+ single positive and CD4+ CD8+ double positive) also occur
Cutaneous infiltrates in ATLL

HTLV-I Tax: cellular proliferation and transformation

The screen versions of these slides have full details of copyright and acknowledgements
The First Human Retroviruses: The Human T Lymphotropic Viruses (HTLVs)

Prof. William W. Hall

HTLV-I Tax and NF-kB activation

- MEKK3
- PKCα
- Rel
- p50
- IκB
- Canonical NF-kB pathway
- Phosphorylation and ubiquitination of IκB
- IκB degradation
- 26S proteasome
- NF-kB activation in patients with ATLL

- NF-κB activation in patients with ATLL

- NF-κB activation in patients with ATLL

Development of ATLL

- HTLV-I infected cell
- IL-2
- IL-2R
- IL-2 dependent growth
- Healthy HTLV-I carrier
- (Smoldering ATL)
- Overt ATL

The screen versions of these slides have full details of copyright and acknowledgements
Established HTLV-I Tax-transgenic mouse models

<table>
<thead>
<tr>
<th>Promoter</th>
<th>Phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virus</td>
<td></td>
</tr>
<tr>
<td>LTR RFLP</td>
<td>Lymphoma/leukemia</td>
</tr>
<tr>
<td>LTR</td>
<td>Lymphadenopathy</td>
</tr>
<tr>
<td>LTR</td>
<td>Polyarthritis</td>
</tr>
<tr>
<td>LTR HAM</td>
<td>Fibrosarcoma of the tail</td>
</tr>
</tbody>
</table>

Generation of Tax transgenic (Tg) mice

- Tg mice were generated with Tax expression under the control of lck proximal promoter which restricts expression to developing thymocytes

Background and pathological findings of three established Tax transgenic mice lineages

<table>
<thead>
<tr>
<th>Founder</th>
<th>P1</th>
<th>P2</th>
<th>Gender</th>
<th>Age (months)</th>
<th>Lymphoma involvement</th>
<th>Leukemia</th>
</tr>
</thead>
<tbody>
<tr>
<td>#36</td>
<td>M</td>
<td></td>
<td></td>
<td>18 (dead)</td>
<td>Lymphoma</td>
<td>ND</td>
</tr>
<tr>
<td>#52</td>
<td>M</td>
<td></td>
<td></td>
<td>17</td>
<td>Lymphoma</td>
<td>ND</td>
</tr>
<tr>
<td>#16</td>
<td>M</td>
<td></td>
<td></td>
<td>12</td>
<td>Lymphoma</td>
<td>ND</td>
</tr>
<tr>
<td>#17</td>
<td>F</td>
<td></td>
<td></td>
<td>15 (closed)</td>
<td>Lymphoma</td>
<td>ND</td>
</tr>
<tr>
<td>#18</td>
<td>F</td>
<td></td>
<td></td>
<td>10</td>
<td>Lymphoma</td>
<td>ND</td>
</tr>
<tr>
<td>#19</td>
<td>F</td>
<td></td>
<td></td>
<td>10</td>
<td>Lymphoma</td>
<td>ND</td>
</tr>
<tr>
<td>#20</td>
<td>M</td>
<td></td>
<td></td>
<td>9</td>
<td>Lymphoma</td>
<td>ND</td>
</tr>
<tr>
<td>#21</td>
<td>F</td>
<td></td>
<td></td>
<td>9</td>
<td>Lymphoma</td>
<td>ND</td>
</tr>
<tr>
<td>#22</td>
<td>F</td>
<td></td>
<td></td>
<td>8</td>
<td>Lymphoma</td>
<td>ND</td>
</tr>
<tr>
<td>#53</td>
<td>M</td>
<td></td>
<td></td>
<td>7</td>
<td>Lymphoma</td>
<td>ND</td>
</tr>
<tr>
<td>#50</td>
<td>M</td>
<td></td>
<td></td>
<td>6</td>
<td>Lymphoma</td>
<td>ND</td>
</tr>
<tr>
<td>#23</td>
<td>M</td>
<td></td>
<td></td>
<td>5</td>
<td>Lymphoma</td>
<td>ND</td>
</tr>
<tr>
<td>#51</td>
<td>F</td>
<td></td>
<td></td>
<td>5</td>
<td>Lymphoma</td>
<td>ND</td>
</tr>
<tr>
<td>#24</td>
<td>F</td>
<td></td>
<td></td>
<td>4</td>
<td>Lymphoma</td>
<td>ND</td>
</tr>
<tr>
<td>#52</td>
<td>M</td>
<td></td>
<td></td>
<td>4</td>
<td>Lymphoma</td>
<td>ND</td>
</tr>
<tr>
<td>#53</td>
<td>M</td>
<td></td>
<td></td>
<td>3</td>
<td>Lymphoma</td>
<td>ND</td>
</tr>
<tr>
<td>#54</td>
<td>F</td>
<td></td>
<td></td>
<td>3</td>
<td>Lymphoma</td>
<td>ND</td>
</tr>
<tr>
<td>#55</td>
<td>F</td>
<td></td>
<td></td>
<td>2</td>
<td>Lymphoma</td>
<td>ND</td>
</tr>
<tr>
<td>#56</td>
<td>M</td>
<td></td>
<td></td>
<td>2</td>
<td>Lymphoma</td>
<td>ND</td>
</tr>
<tr>
<td>#57</td>
<td>F</td>
<td></td>
<td></td>
<td>2</td>
<td>Lymphoma</td>
<td>ND</td>
</tr>
</tbody>
</table>

The screen versions of these slides have full details of copyright and acknowledgements.
Estimation of Tax DNA copy number

![Genetic marker graph]

Tax integration sites-genome walking analysis

- 3′-Flanking sequence:
 - TTTGGAGCATAGGTA TT
 - GCTGCAGGTCGAGGAATTC
 - AACAGGCATCTACTGAGTGGACCCAACGCATGAGAA

- Transgene sequences:
 - Chr.4:
 - A1 A2 A3 A4 A5 B1 B3 B2 C7 C6 C5 C4 C3 C2 C1 D1 D3 E1 E2

Gross pathological findings

- **Mesenteric lymphoma**
- **Splenomegaly**
- **Control animal**
The First Human Retroviruses: The Human T Lymphotropic Viruses (HTLVs)

Histological findings

- Lymph node
- Bone marrow
- Liver

Histological findings

- Skin

Peripheral blood: leukemic cells

The screen versions of these slides have full details of copyright and acknowledgements.
The First Human Retroviruses: The Human T Lymphotropic Viruses (HTLVs)

Prof. William W. Hall

Histological findings

Pneumocystis jiroveci pneumonia

NFκB activation in Tax Tg mice

Transfer of Tg Tax ATLL disorder to SCID mice

Splenic lymphoma cells

i.p. or s.c.

The screen versions of these slides have full details of copyright and acknowledgements
The First Human Retroviruses: The Human T Lymphotropic Viruses (HTLVs)

Prof. William W. Hall

SCID mice peripheral blood

SCID mice histology

Lymph node

Liver

Lung

Kidney

Flow cytometry analysis

The screen versions of these slides have full details of copyright and acknowledgements
The First Human Retroviruses:
The Human T Lymphotropic Viruses (HTLVs)
Prof. William W. Hall

Cell surface
CD3ε
CD3ε + PI

Permeabilization

Data analysis
Distribution of ratio values
Data were pre-processed using RMA (2270)
VSN (2465)
Li & Wong (1000)
A total of 839 probe sets out of 45,000 exhibiting greater than two fold difference were selected

Conclusions
• Tax transgenic mice under the control of the lck promoter develop aggressive T cell leukemias and lymphomas, the latter being clinically and histologically identical to that observed in ATLL
• Disease development was associated with NFκκκκB activation and characteristically Tax expression at all stages of disease
• The findings suggest that the expression of Tax alone is sufficient for the development of T cell leukemia/lymphoma and does not require the involvement of other viral gene products
• Leukemia/lymphoma could be readily transferred to SCID mice with the rapid development of fulminant disease
• It is expected that the SCID mouse model will allow the development and evaluation of novel therapeutics for the treatment of this disorder

The screen versions of these slides have full details of copyright and acknowledgements
The First Human Retroviruses:
The Human T Lymphotropic Viruses (HTLVs)
Prof. William W. Hall

HTLV-II infection in American Indian populations

HTLV-II infection in IDUs

HTLV-II phylogenetic tree

The screen versions of these slides have full details of copyright and acknowledgements.
The First Human Retroviruses:
The Human T Lymphotropic Viruses (HTLVs)
Prof. William W. Hall

HTLV Tax heterogeneity

- **Tax I**: FQTKAYHPSFLLSHGQYSSPSHSLFEYINIPSLLPNEK
- **Tax IIa**: F_ Y_ Q_ N_ D_ V_ I_ KE
- **Tax IIb**: F_ Y_ Q_ N_ D_ V_ I_ KG
- **Tax IIc**: F_ Y_ Q_ N_ D_ V_ I_ KE

HTLV-II molecular epidemiology

- **HTLV-IIa**: Predominant infection in urban areas of North America (blood donors, IVDA's)
- **HTLV-IIb**: Predominant infection in most Native Indian groups in North, Central and South America; Predominant infection in urban areas of Italy and Spain
- **HTLV-IIc**: Found exclusively in urban areas and Native Indian groups in Brazil

Human T lymphotropic virus type II:
onscogenic properties of Tax

- **In vitro**: Tax transformation of PBMCs and established cell lines
- **In vivo**: Development of Tax transgenic animal models
The First Human Retroviruses:
The Human T Lymphotropic Viruses (HTLVs)

Prof. William W. Hall

The screen versions of these slides have full details of copyright and acknowledgements