Human genetic variation and therapeutic development

Sally John
Senior Lecturer in Genetic Epidemiology

Nick Davies
Senior Director
Pfizer Global Research & Development

Human genetic variation

• Most traits that are of significant public health impact are attributable to a complex interaction of genetic and environmental effects
 – Susceptibility to common diseases
 – Progression and severity of chronic disease
 – Response to treatments
 • Efficacy
 • Adverse drug reactions (ADRs)

Asthma and allergies
Cardio-vascular disease
Schizophrenia
Obesity
Type 2 diabetes
Depression
Common cancers
Rheumatoid arthritis
Osteoarthritis

Public databases archive data describing genetic variation

• A genetic polymorphism is a variant that occurs at a frequency >1% in the population
• It is estimated there are > 10 million SNPs in the human genome
• There has been an unprecedented increase in the number of SNPs identified and submitted to public databases
 – NCBI dbSNP
 – HapMap project
Human genetic variation and therapeutic development

Dr. Sally John
Dr. Nick Davies

dbSNP

- Build 125 contains 10,430,753 unique rs numbers

Drug discovery pipeline

Implications of understanding human genetic variation
Most medicines are efficacious for 40-60% of patients.

- Efficacy
- Tolerability of side effects
- No Efficacy and tolerable side effects
- No Efficacy and intolerable side effects

Human variation and therapeutic development

100 discovery projects
Identify potential disease targets
Target prioritization/validation/selection
Screening the common allotype of the target protein
Test for human variation impact on the drug discovery pipeline
Target identification
Defining targets
Identification, prioritization and validation

Products
A good target will play a key role in disease pathology

- Genetic approaches can be used to identify novel targets or validate potential targets.

TNFα
- A target for rheumatoid arthritis (RA)
- TNFα is expressed at high levels in affected tissues of RA patients
- TNFα polymorphisms are associated with RA

- Blocking the action of TNFα in vitro and in vivo attenuates the immune response

Family and population based methods

- **Linkage**
 - Linkage may extend over 10 cM
 - Requires 350 markers to scan the genome
 - Mendelian disease genes
 - Low power to detect common low penetrance alleles

- **Association**
 - Association extends only a few kB
 - Requires >100K markers per genome scan
 - Greater power to detect alleles that influence complex traits

Genetic association studies

- Gene A: two allelic forms
- Genotype cases and controls

- Compare allele/genotype frequencies between cases and controls
Evidence for association

<table>
<thead>
<tr>
<th></th>
<th>+ risk</th>
<th>-risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case</td>
<td>192</td>
<td>214</td>
</tr>
<tr>
<td>Control</td>
<td>147</td>
<td>339</td>
</tr>
</tbody>
</table>

Odds ratio > 1

ch squared = 27.27 p < 0.00001

Odds Ratio = 2.07; 95% CI (1.6 - 2.7)

Genes that confer low genetic relative risks (GRR) are hard to find

<table>
<thead>
<tr>
<th>Genes</th>
<th>MAF</th>
<th>p</th>
<th>N</th>
<th>GRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADAM3</td>
<td>20%</td>
<td>0.05</td>
<td>61</td>
<td>2.8</td>
</tr>
<tr>
<td>DRO4</td>
<td></td>
<td>0.0001</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>PTPN2</td>
<td></td>
<td></td>
<td>295</td>
<td>1.6</td>
</tr>
<tr>
<td>PRDH</td>
<td></td>
<td></td>
<td>840</td>
<td></td>
</tr>
<tr>
<td>PFABY</td>
<td></td>
<td></td>
<td>2004</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5717</td>
<td></td>
</tr>
</tbody>
</table>

GRR = 1.2

Which SNPs to type?

Candidate gene: angiotensin converting enzyme ACE

http://www.hapmap.org
Human genetic variation and therapeutic development
Dr. Sally John
Dr. Nick Davies

Haplotype tagging SNPs
10 SNPs from the androgen receptor (AR) gene on the X chromosome genotyped in 92 healthy males
There are 2^{10} possible haplotypes that could be observed
4 common haplotypes account for all the variability observed

<table>
<thead>
<tr>
<th>Haplotype</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTTGCGTGG</td>
<td>10%</td>
</tr>
<tr>
<td>GCCCCACAGG</td>
<td>73%</td>
</tr>
<tr>
<td>ATTGTGGCC</td>
<td>15%</td>
</tr>
<tr>
<td>GCCATAAGG</td>
<td>2%</td>
</tr>
</tbody>
</table>

LD, haplotype estimation and tagging SNPs
http://www.hapmap.org
http://www.broad.mit.edu/mpg/haploview/

The "druggable" genome
- Annotated genome sequence
- 2-3000 tractable gene targets
 - Kinases
 - Proteases
 - CPGRs
 - Ion channels
- Sample size >1000
 - Asthma
 - Arthritis
 - Depression
 - Obesity
 - Schizophrenia

Roses AD et al., Drug discovery today 2005 10: 177-189
Whole genome by association

- Identify novel targets
- Define key pathways
- Identify genetic predictors of clinical outcome
- Increase the predictive value of genetic factors by considering gene-gene interactions

Clinical trials

Predicting efficacy and safety

Phase 1

First in human studies understanding drug ADME properties
Azathioprine (AZA) and chronic inflammatory disease

- Thiopurine methyltransferase (TPMT) metabolises azathioprine into both active and inactive metabolites
- Genotyping patients for 3 polymorphisms in the TPMT gene may predict those at greater risk of adverse events e.g., bone marrow toxicity
- Will this be useful in the clinic?

Variation and metabolism I

- Codeine treatment for headache
 - Codeine needs to be metabolised to morphine by the liver enzyme CYP2D6
 - The drug is ineffective in those people who cannot metabolise the drug properly (10% of Caucasians)
 - The gene encoding CYP2D6 is polymorphic
 - Over 30 mutant forms of the enzyme are described
 - These variations can predict efficacy

CYP gene family variation

- CYP (Cytochrome P450) oxidases are enzymes that metabolize compounds
- Six CYP enzymes account for 90% of drug metabolism
- Patients can carry mutations or duplications in one or more CYP genes
- As a consequence, individuals may be a range of poor to ultra-rapid metabolizers
- Poor metabolizers may develop side effects
- Ultra-rapid metabolizers may not respond to treatment
Human genetic variation
and therapeutic development

Dr. Sally John
Dr. Nick Davies

Variation and metabolism II

- AmpliChip CYP450 Test
- Provides comprehensive coverage of gene variations in CYP2D6 and CYP2C19 genes
- For use by physicians in individualizing treatment selection and dosing for drugs metabolized through these genes

http://www.roche-diagnostics.com/products_services/amplichip_cyp450.html

Phase 2, 3 and in the clinic

“Will it work?”

Atypical anti-psychotics and schizophrenia

- Drug response heterogeneous both for efficacy and ADRs such as rapid weight gain
 - DMEs and drug targets
 - Dopaminergic, serotonergic, and glutamatergic pathways

The screen versions of these slides have full details of copyright and acknowledgements
Whole genome by association

Wish list for pharmacogenetics

- Sequence of the human genome
- Knowledge about polymorphisms
- A haplotype map of the genome
- Accurate, inexpensive genotyping technologies
- Populations accurately measured for the outcome of interest

Genotyping methods must be high-throughput

Criteria for success of WGA:

- 100K array captures a mean of 32% of common genetic variation in the European population
- 500K array captures >80% of common genetic variation in the European population
- Rare variation (MAF<5%) is not well captured using current technologies

The screen versions of these slides have full details of copyright and acknowledgements.
Human genetic variation and therapeutic development
Dr. Sally John
Dr. Nick Davies

Criteria for success of WGA: magnitude of effect size and multiple testing

- Two stage approach
 - Replication cohorts
 - Joint analysis
- Meta-analysis
- Collaboration

Genotype 500K SNPs
1000 cases 10000 controls

- P > 0.05
 - Type II error
 - Not associated markers
- P < 0.05
 - Reject the null hypothesis
 - Associated markers
- P > 0.05
 - Type I error

- P < 0.05
 - Accept the null hypothesis

Non-synonymous coding SNPs

- Most polymorphisms may have no functional relevance
- Exonic
 - Non-synonymous coding SNPs
 - Lymphoid tyrosine kinase (PTPN22) R620W SNP
- Regulatory regions and introns
 - Transcription levels and alternative splicing
 - Serotonin transporter protein (SLC6A4) Ins/del in promoter region and an intronic VNTR
- Intragenic
 - Gene regulation

Functional relevance of genetic variation

http://genetics.bwh.harvard.edu/pph/data/
http://blocks.fhcrc.org/sift/SIFT.html/

Prediction the functional consequences of non synonymous coding SNPs

The screen versions of these slides have full details of copyright and acknowledgements
Human genetic variation and therapeutic development
Dr. Sally John
Dr. Nick Davies

Allele specific differential gene expression

Conserved non-coding sequences (CNC)

Implications for future treatments

- To date there are few examples of genetic predictors being useful in the clinic
- However gene expression and variation is beginning to make an impact
- Over the next decade it is likely that our understanding of human genetic variation will impact both on the diagnosis and treatment of disease

Lin W et al., Genomics, 2005, 86, 518-527

Drake et al., Nature Genet, 2006, 38, 223-227

47% SNPs showed differential allele specific expression
Human genetic variation and therapeutic development

Dr. Sally John
Dr. Nick Davies

Redefining disease...

...will drive future treatment approaches

...and bring increased benefits for patients

The screen versions of these slides have full details of copyright and acknowledgements
Human genetic variation and therapeutic development
Dr. Sally John
Dr. Nick Davies

Marketed targeted treatments

<table>
<thead>
<tr>
<th>Product</th>
<th>Primary Indication</th>
<th>Diagnostic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herceptin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gleevec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kineret</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://www.herceptin.com/professional/index.jsp
http://www.gleevec.com/index.jsp
http://www.kineret.com/professional/index.jsp

Targeted treatments - overview

Summary

- The study of human genetic variation is a key consideration and component in the discovery and development of new medicines.
- It will drive a greater understanding of the causes and treatment of disease.
- Future medicines will incorporate predictive diagnostics to target patients more effectively.