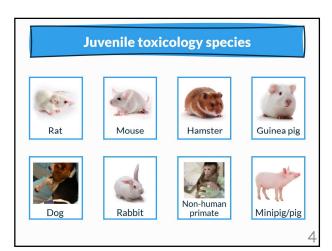


Dr. Alan Hoberman Charles River Laboratories, USA

Regulatory status of juvenile technology
regulatory status of juvernite teermology
US - Food and Drug Administration (FDA)
Guidance document: Nonclinical Sa1fety Evaluation of Pediatric Drug Products (2006)
Europe – European Medicines Agency (EMA)
Guideline on the need for Nonclinical Testing in Juvenile Animals on Human Pharmaceuticals for Pediatric Indications (2008)
Japan – Ministry of Health, Labour and Welfare (MHLW)
Japan - Millistry of Health, Labour and Wellare (Mintw)
Guideline on the Nonclinical Safety Study in Juvenile Animals for Pediatric Drugs (2012)
ICH – M3(R2): If primary use is pediatric a modified chronic study starting dosing at juvenile ages can be conducted

Regulatory status of juvenile technology
ICH S-11 – Guidance in progress – Finalized in 2020 and will harmonize these documents



Dr. Alan Hoberman Charles River Laboratories, USA

Desirable characteristics			
Rodents	Nonrodents		
Rats Estrous cycle, reproductive capacity, litter size, short gestation, skeletal growth, immunological assessments,	Non-human primate Several anatomical and maturation characteristics similar to humans, including use of human pediatric screens to evaluate neurobehavior		
and neurobehavioral assessments	Minipigs Several anatomical and maturation characteristics similar to humans		
Mice Estrous cycle, reproductive capacity, litter size, short gestation,	Rabbit Reproductive capacity and ocular		
immunological assessments, and neurobehavioral assessments	Dog Skeletal growth, pulmonary function, cardiovascular function, renal function, and ocular		

Dr. Alan Hoberman Charles River Laboratories, USA

Factors to	consider du	ıring specie	selection
Route of administration	Route of blood collection	Technical expertise	Age at weaning/ growth/ maturation
Reproductive capacity evaluations	Litter size	Blood volume	Historical control data
Species availability	Use in adult toxicity	Organ system development (toxicological target organs)	Feasibility of pre/post- weaning evaluations

Species comparison					
Factor	Rat/Mouse	Rabbits	Minipigs	Dogs	Nonhuman Primate
Animal availability	Routine	Available, but advance notification highly recommended	Available, but advance notification highly recommended	Routine	Can be a problem
Pre- weaning procedures	Routine	Limited	Routine	Routine	Can be (but not typically done
Age of sexual maturity	9 to 13 weeks	4 to 7 months (strain dependent)	5 to 7 months	12 months (males) and 8 to 10 months (females)	4 to 6 years
Group sizes	10 to 20/sex (depending on endpoints)	10/sex (main) 5/sex (recovery)	6/sex (main) 3/sex (recovery)	5/sex (main) 5/sex (recovery)	5 to 10 juveniles

Dog vs. Minipig				
Comparison of endpoint examples				
Dog	Minipig			
Ophthalmology from PND 21	 Ophthalmology from PND 7 			
 Blood sampling for clinical pathology 	 Blood sampling for clinical pathology 			
 From PND 4 jugular vein unanesthetized animal 	PND 14 (hematology only)PND 21 jugular vein			
 Cardiovascular examinations 	unanesthetized animal			
 From PND 7 (ECG) 	 Cardiovascular examinations 			
 From PND 10 (ECG and BP indirect) 	• From PND 5 (ECG)			

Dr. Alan Hoberman Charles River Laboratories, USA

Dr. Elise Lewis Charles River Laboratories, USA

The minipig as an alternative model Advantages Easy to select vigorous healthy pups to the study and perform technical procedures/physical examinations etc. as of PND 1 The developmental periods are relatively short enough to consider long-term studies (including reversibility) Physical size during the minipig developmental windows' is very conductive for technical procedures/assessments 9 The minipig as an alternative model Advantages Cost is comparable (potentially less) with juvenile dog model? Cyclicity feasible for reproduction testing Immunology assessments

Th	ne minipig as an alternative model
	Disadvantages
	Limited historical control data/references (publication in preparation)
	Venous access gets difficult for blood sampling and IV dosing as the animals get older
	Skeletal growth continues post puberty for a longer time
	Advanced growth rate and maturity at birth (e.g., neuromuscular and respiratory systems) may lead to other animal models being more comparable with the human for a number of compounds

Dr. Alan Hoberman Charles River Laboratories, USA

Dr. Elise Lewis Charles River Laboratories, USA

Study design considerations	
	10

CALL				
STHAT	v neci	ign qu	PCT	one
Juu	y uco	igii qu	Coll	

Children are not just little adults

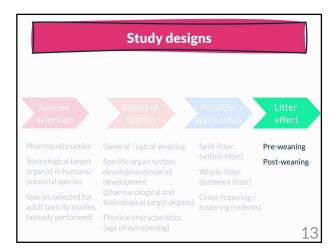
- Indication/age/route/duration of treatment
- Selection of the most appropriate test species: is the rodent acceptable?
- How often will the drug be administered in the clinic?
- How will the drug be administered? Is the same route feasible in animals?

11

Study design questions

Children are not just little adults

- Are there any target organs based on adult animal or human data?
- What is the clinical mode-of-action? Is the drug CNS-active?
- Is a recovery assessment warranted based on adult animal or human data?
- Juvenile-only indications? Are 2 species needed?



Dr. Alan Hoberman Charles River Laboratories, USA

When to dose						
Age groups	Human	Rat/ mouse (days)	Rabbit (weeks)	NHP (Cyno) (months)	Minipig (days)	Dog (days)
Premature	Less than term	1 to 4	0 to 1-2	-	-	1 to 4/10
Neonate	Birth to 1 month	4 to 7/14	2 to 3	Birth to 0.5	0 to 14	5/11 to 21
Infant	1 month to 2 years	7/14 to 21	3 to 5	0.5 to 5	15 to 28	22 to 42
Children	2 to 12 years	21 to 28F/35M	5 to 13	6 to 35	29 to 108	43 to 180
Juvenile	12 to 16 years	28F/35M to 49F/70M	13 to 21	36 to 48	120 to 180	180 to 270
12						

Species-specific technical considerations				
	Rats vs. mice			
	Small molecules are generally not species specific and therefore can be tested in a standard DART animal model			
	Well-established experimental designs and well-established historical control data			
17 /	Short gestation periods			
Rats	Large litter sizes			
	Good fertility			
	14			

Dr. Alan Hoberman Charles River Laboratories, USA

Dr. Elise Lewis Charles River Laboratories, USA

HSTalks

Species-specific technical considerations

Rats vs. mice

- · Variable litter sizes
- Small animal, small available blood volume

Mice

- Not all strains recommended for reproductive evaluations
 - E.g. CD-1 nude mice have problems with ovulation and are unable to lactate
- Dominant female will suppress ovulation
- · Once mated males are aggressive and cannot be returned to group housing

Technical considerations

Non-routine species

Average pup numbers/litter			
Mouse Strain	Litter size		
Crl: CD1	10 to 12 pups		
Crl: CD1 nude	8 to 10 pups		
Crl: C57BL/6	6 to 8 pups		
Crl: Balb/c	5 to 7 pups		

· Litter size and viability of some strains

15

Technical considerations

Non-routine species

Age (post partum day)	Collection Site	Volume Obtained per Pup
7	Cardiac puncture	100 uL
13	Vena cava	100 uL
21	Jugular vein	<200 uL
21	Abdominal aorta	400 - 500 uL
28	Jugular vein	100 uL
35	Jugular vein	150 uL
42	Abdominal aorta	0.8 - 1.2 mL

- · Small size of the animal
- Dosing
- Blood collection
 - When do samples need to be
 - What volume is required for analysis?
 - Which sampling procedure is feasible at this age?
 - Which one will provide the volumes needed for the assay with less difficulty?

Dr. Alan Hoberman Charles River Laboratories, USA

Dr. Elise Lewis Charles River Laboratories, USA

Guinea pigs vs. hamsters Time-mated sows received on GD 32-37 Long gestation period Group housing facilitates optimal nursing and maternal care conditions Socialization Small litters: <4 (can be up to 8) Sows nurse for 3 to 5 days post delivery Weaned between days 5 and 10 postpartum and can be co-housed per sex up to 5 weeks of age Vitamin C requirement

Guinea pigs vs. hamsters

Hamsters

- Careful consideration must be taken when handling the dams as they are known to cannibalize their litter when disturbed
- Remove the dam away from the litter to a secondary home cage that the dam is exposed to daily prior to delivery, but not the litter from the dam
- Special husbandry techniques required
 - E.g., nesting material should remain undisturbed
 - · Frequent glove changes

Nonhuman primates vs. rodents Standard routes Standard routes • Pre-weaning: Co-housed with dam and litter Social needs: Two to three per Housing Post-weaning: Individually housed Pre-weaning: Nursing and presumed to consume maternal feed after PND 14 Amount: 3-4% of BW Feeding • Small portions, 3x per day Post-Weaning: Provide fixed amount ad • Thin gloves Fragile • Thorax, not limbs Handling • Special precautions needed during IV dosing · Fleece pad for comfort on separation from cage mates · Blood volume limitations · Terminal blood collections Data collection (only ~1.5 kg at 12 mo old) Blood volume limitations (early life) Hand-held for ECG · Reproductive capacity can be evaluated

Dr. Alan Hoberman Charles River Laboratories, USA

Dr. Elise Lewis Charles River Laboratories, USA

HSTalks

Duration of treatment

- How often is the drug administered in the clinic? Acute? Or chronic?
- ICH M3 (R2) states "the duration of (treatment) will depend on the toxicity to be addressed, the organ system involved, and the information available from previous studies"
- Generally accepted range is earliest required to sexual maturation (PND 49 or 70)

18

Practical study design considerations

Dose levels

- What determines the high dose? Frank toxicity can cause 2° effects on growth
- The highest no-effect level in adults should generally be selected as high dose
- If there is no effect in juveniles, adult safety margins may be applied (assuming comparable blood levels (exposure)

Practical study design considerations

Duration of recovery period

- What determines the inclusion of a recovery period?
- When included, how long should the recovery period be?
 Generally 28 days is ok
- What assessments are included?

19

Dr. Alan Hoberman Charles River Laboratories, USA

Dr. Elise Lewis Charles River Laboratories, USA

HSTalks

Practical study design considerations

Species selection, single species or two species

- ICH M3 (R2) states "when a juvenile animal toxicity study $is\ warranted, one\ relevant\ species\ (preferably\ rodents)$ is generally considered adequate"
- Juvenile animal studies in 2 species are rarely recommended
 - Lack of adult human data (i.e., a pediatric-only indication)
 - Multiple issues of developmental concern and a single species cannot address

_		_			
Р	ractic	al stud	v desi	ign consic	lerations

Within-litter design

- · All groups represented within each litter; accounts for
- · Genotypically similar pups assigned to control and treated groups
- Greater chance of cross-contamination (across pups, and also the dam)

20

Practical study design considerations

Between litter design

- Entire litter assigned to the same group; makes for a large study
- Not compatible with the 3Rs as a lot of pups within litters are wasted
- Simplification of dosing all pups in the litter get the same dose
- · Reduced chance of cross-contamination

Dr. Alan Hoberman Charles River Laboratories, USA

Dr. Elise Lewis Charles River Laboratories, USA

Cross fostering in rodents Why is it important? • Genetic diversity of the pups receiving the test article needs to be accounted for; pups from one litter should never be over-represented within any dose group Option 1 Treatment Treat one/sex/litter at a specific dose of test article Advantage Optimal for genetic diversity Does not align with 3Rs; up to 720 pups could be wasted based on a main/recovery size of 10/sex/group (does not include special assessments)

Cross fostering in rodents							
Why is it important?							
Genetic diversity of the pups receiving the test article needs to be accounted for; pups from one litter should never be over-represented within any dose group							
	Option 2						
Treatment	All of the pups in a litter dosed with the same dose level						
Advantage	Minimize number of pups						
Disadvantage	Insufficient genetic diversity						

	Cross fostering in rodents						
Why is it important?							
 Genetic diversity of the pups receiving the test article needs to be accounted for; pups from one litter should never be over-represented within any dose group 							
	Option 3						
Treatment	Treat one/sex within each litter at one of the four doses being used in the study						
Advantage							
Disadvantage	Potential cross-contamination from feces and urine, having animals from multiple dose groups within a litter						

Dr. Alan Hoberman Charles River Laboratories, USA

Dr. Elise Lewis Charles River Laboratories, USA

Why is it important? • Genetic diversity of the pups receiving the test article needs to be accounted for; pups from one litter should never be over-represented within any dose group Option 4 Treatment Reassign pups from multiple litters to a dam Advantage Cross-fostered by breeding facility; Optimal for the number of litters and dams required and at the same time, addresses the issue of dose cross-contamination

			end		
	tone	O M C	and	$\mathbf{n} \mathbf{o}$	
~	Laliu		- 110		11115

- · Detailed clinical observations and survival
- Body weights and food consumption (assessed PND 21 onwards)
- Clinical pathology, organ weights and histology
- $\bullet \quad \text{Developmental landmarks} \& \text{landmarks of sexual maturation} \\$

2

Standard endpoints

- Developmental landmarks & landmarks of sexual maturation
 - Anogenital distance (assessed on PND 1) rarely included per dosing period.
 - Nipple retention (assessed in males only, on PND 13)
 - Vaginal patency (assessed PND 25 onwards in rat)
 - Balanopreputial separation (assessed PND 35 onwards in rat)
 - Other parameters (eye opening, pinna detachment, surface and air righting reflex, pupillary response etc.)

The unique things about juvenile toxicology studies from adult studies are sexual maturation and normal growth

Dr. Alan Hoberman Charles River Laboratories, USA

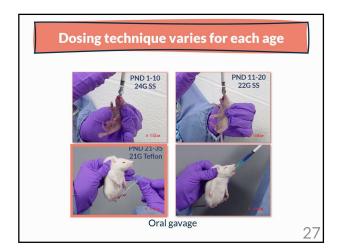
Dr. Elise Lewis Charles River Laboratories, USA

Routine evaluations						
Earliest day post partum						
Parameters	Species					
Parameters	Rat	Mouse	Rabbit	Dog	Cyno	Minipig
In-life (clinical signs, body weight)	1	1	5	1	1	1
Food consumption	22	22	28	42	180	28
Clinical pathology	1	1	5	1	14	14
Ophthalmology	21	21	21	21	14	7
Toxicokinetic sampling	1	1	1	1	14	1
Organ wt, gross & microscopic observations	1	1	5	1	1	1

Dose administration techniques

0.4

Routine evaluations							
Age groups	Human	Rat/ mouse (days)	Rabbit (weeks)	NHP (Cyno) (months)	Minipig (days)	Dog (days)	
Premature	less than term	1 to 4	0 to 1-2	-	-	1 to 4/10	
	birth to 1 month	4 to 7/14	2 to 3	birth to 0.5	0 to 14	5/11 to 21	
	1 month to 2 years	7/14 to 21	3 to 5	0.5 to 5	15 to 28	22 to 42	
Children	2 to 12 years	21 to 28F/35M	5 to 13	6 to 35	29 to 108	43 to 180	
	12 to 16 years	28F/35M to 49F/70M	13 to 21	36 to 48	120 to 180	180 to 270	
						2:	



Dr. Alan Hoberman Charles River Laboratories, USA

		Earliest	day post n	artum		
Earliest day post partum Species						
Dose route	Rat	Mouse	Rabbit	Dog	Minipig	NHP*
Oral gavage	1	7	4	1 (caps. 42)	1	>2 weeks
Intravenous bolus	4 Intermit- tent	10	14	1	4	>2 weeks
Intravenous infusion	>21	?	?	49 to 56	28(4)?	>2 weeks
Inhalation	4 to 7	21	?(10)	10	?	?
Parenteral (IM/SC)	1	1	4	1	1	>2 weeks
Dermal	10	21	35	42	1	>2 weeks

Dosing technique	varies for each age
	PND 4, intravenous bolus
	PND 4, inhalation

Dr. Alan Hoberman Charles River Laboratories, USA

28

Dr. Elise Lewis Charles River Laboratories, USA

New routes of administration Mice Temporal vein Vein anterior of the ear bud that feeds into the jugular vein PND 1 Limited volumes Mice Intracerebroventricular injections Well-tolerated method to deliver cells, drugs, or viral vectors to the CNS (left or right ventricles) Volume limited to 5 mcL per injection

• PND 1 or 2

New routes of administration

Rat

- Intravenous infusion
- Non-cannulated
- Up to 30 minutes
- PND 21/22
- Subcutaneous infusion via osmotic minipumps
- PND 14 to 42

Routes of administration - rabbits							
De	monstrat	ion of oral gava	age Demo	nstration of	inhalatior	n dosing in	
dosing in a pre-weanling rabbit kit a pre-weanling rabbit kit (PND 15)							
	Oral	Intra- peritoneal	Sub- cutaneous	Intra- muscular			
Dose Volume	1 to 10 mL/kg	1 to 10 mL/kg	1 to 10 mL/kg	0.5 mL/kg	1 to 2 mL/kg	Duration 3 hours	
Age at Initiation	PND 5	PND 4	PND 4	PND 4	PND 35	PND 6 (15 min intervals)	

Dr. Alan Hoberman Charles River Laboratories, USA

Dr. Elise Lewis Charles River Laboratories, USA

Exposure and microsampling

30

Importance of metabolism/toxicokinetics

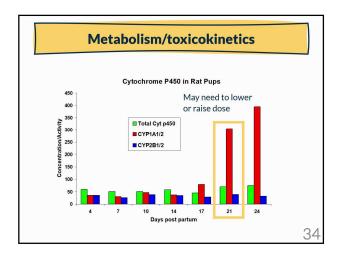
- Neonate to juvenile to adult, often dramatic differences
 - Human neonates 1/5 of adult to four to six times adult rates in children
- Nonclinical changes with age
 - Between days 7 to 28 post-partum differences in AUC up to 300-fold have been seen
- Sample blood/plasma/serum all ages
 - Micro-sampling from various sites at different ages
- Sample tissue all ages
- Induction studies

31

Juvenile studies and exposure assessment

- Juvenile studies are not useful for predicting exposure as we have limited ability to correlate species-specific timing for maturation of drug metabolizing enzymes
- Bioavailability and biotransformation may be difficult to predict accurately in juveniles based on adult data

Factor influencing exposures	Juvenile animals vs. adults
Gastric pH	Higher
Gastric motility	Lower
Protein binding	Lower
Body fat composition	Lower
Body water and fluids	Lower
Drug receptor expression and binding	Variable
Drug metabolism	Developmentally lagging



Dr. Alan Hoberman Charles River Laboratories, USA

Ontogeny of metabolic capability					
Metabolic	Age o	Age of Development			
Parameter	Human	Rat	References		
Phase I enzymes	Reach adult level at 3-6 months	Develop postnatally	Ginsburg et al, 2002; Klinger et al, 1981		
Carboxyesterases	Reach adult level by 2 years	Increase during post-weaning (PND 21-35)	Bell & Echobichon, 1975; Echobichon & Stephens, 1973; Augustinsson & Barr, 1963		
Phase II enzymes	Reach adult level at 3-6 months	Vary depending upon enzymes – reach adult levels at puberty	Ginsburg et al, 2002; Lucier, 1981		

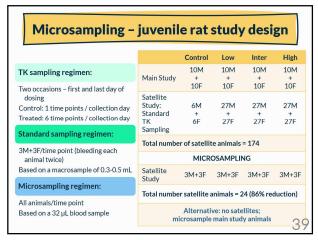
Micros	ampling
	Typical microsamples: • Biofluid (plasma or serum) • Approx. 32 to 64 µL blood into microtubes or capillaries Possibilities: • Non-terminal repeated (weekly) sampling from non-anaesthetized pups during the pre-weaning period

Dr. Alan Hoberman Charles River Laboratories, USA

Dr. Elise Lewis Charles River Laboratories, USA

Microsampling – toxicology practicalities Use fewer rodents in satellite groups Possibility to exclude satellite animals? Single TK profiles for rodents as standard Analysis of other biomarkers (main group or satellites) Regulatory and industry acceptance

Microsampling – rodent pups						
Up to PND 14	PND 14 to PND 28	≥ PND 28				
Terminal blood samples collected by cardiac puncture or vena cava Non-terminal techniques	Microsampling from jugular or tail vein allows for serial sampling (up to 2 time points)	Microsampling from jugular or tail vein allows for serial sampling (up to 5 time points)				
sampling from sub-mandibular or lateral tail vein Using microsampling techniques, one pup can be used per time point						
Using macrosampling techniques, pooled blood samples required to obtain sufficient volume for analysis	PND 7 Rat Pup	PND 10 Mouse Pup				


Microsampling – PND1 rat pup Blood drawn into hematocrit K2EDTA capillaries following puncture of the jugular vein 60 μL capillary (either 30 or 60 μL possible) and 25G needle

Dr. Alan Hoberman Charles River Laboratories, USA

rowth and	d boı
assessme	ents
Use of DXA and p	

Parameters Body weight Physical development (rats, mice and dogs [mini-pigs, rabbits]) Tooth eruption, eye opening, pinna detachment Vaginal opening, preputial separation, testes descent Anogenital distance (rodents)	Growth and physical development
 Body weight Physical development (rats, mice and dogs [mini-pigs, rabbits]) Tooth eruption, eye opening, pinna detachment Vaginal opening, preputial separation, testes descent 	
 Body weight Physical development (rats, mice and dogs [mini-pigs, rabbits]) Tooth eruption, eye opening, pinna detachment Vaginal opening, preputial separation, testes descent 	
 Physical development (rats, mice and dogs [mini-pigs, rabbits]) Tooth eruption, eye opening, pinna detachment Vaginal opening, preputial separation, testes descent 	Parameters
 Tooth eruption, eye opening, pinna detachment Vaginal opening, preputial separation, testes descent 	Body weight
Vaginal opening, preputial separation, testes descent	• Physical development (rats, mice and dogs [mini-pigs, rabbits])
	Tooth eruption, eye opening, pinna detachment
Anogenital distance (rodents)	Vaginal opening, preputial separation, testes descent
	Anogenital distance (rodents)

Dr. Alan Hoberman Charles River Laboratories, USA

Dr. Elise Lewis Charles River Laboratories, USA

Growth and physical development

- Skeleton
 - In vivo measurements
 - Ex vivo measurements and evaluations

Routine assessments of skeletal growth

In vivo physical measurements

- Crown-rump length, tail length, tibia measurements (rodents)
- Crown-rump, external tibia (rabbit)
- Height, length (minipig, dog)
- External measurements, head circumference, external tibia, anogenital distance (non-human primates)

42

Routine assessments of skeletal growth

In vivo radiographs

• Lumbar spine, femur, tibia

Ex vivo measurements

• Femur and tibia - length and width

The screen ve	rsions of	these slid	es have fi	ıll details	of convrid	tht and ac	knowled	gements
1116 301 6611 46	1 310113 01	u iese silu	csnaven	uli uctalis	OI CODYI IE	tiil aiiu ac	KI IUWI C U	gennenus

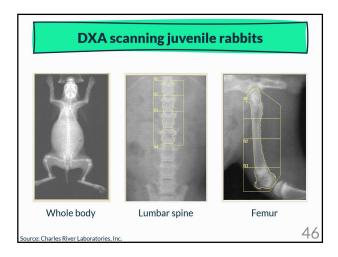
Dr. Alan Hoberman Charles River Laboratories, USA

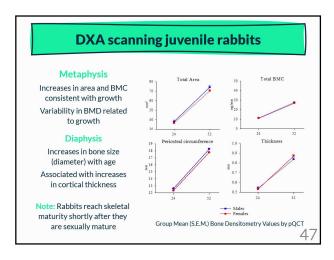
Dr. Elise Lewis Charles River Laboratories, USA

Advanced skeleton assessments Bone quality Bone growth dynamics Bone mineral content (BMC) Bone mineral density (BMD) Measure BMC and BMD in vivo Dual-energy X-ray (DXA) absorptiometry Peripheral quantitative computed tomography (pQCT) Biomechanical strength testing Architecture (histomorphometry)

Advanced skeleton assessments Bone quality Bone growth dynamics Bone mineral content (BMC) Bone mineral density (BMD) Measure BMC and BMD in vivo Dual-energy X-ray (DXA) absorptiometry Peripheral quantitative computed tomography (pQCT) Biomechanical strength testing Architecture (histomorphometry) Architecture (histomorphometry)

In vivo or ex vivo measurements Body weight Crown to rump Bone length and width Physical or radiographic measurements are comparable X-rays provide a permanent and verifiable record




Dr. Alan Hoberman Charles River Laboratories, USA

Dr. Elise Lewis Charles River Laboratories, USA

Scan large areas of bone BMC converted as areal (2D) BMD Body composition for Fat and Lean mass analysis 2D densitometry "Gold" standard for osteoporosis diagnostic Need anesthesia Day 19 pp Day 63 pp Lumbar Spine in Juvenile Dogs 45

Dr. Alan Hoberman Charles River Laboratories, USA

Dr. Elise Lewis Charles River Laboratories, USA

pQCT

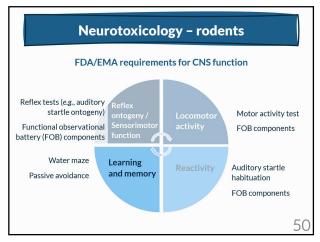
- Volumetric BMD
- Differentiation between trabecular and cortical bone
- Single slice through the bone
- Cross-sectional moment of inertia (CSMI) is used as a bone strength parameter

Source: Charles River Laboratories Inc

	\sim	~	_
•1	•	ш	
•	•	_	

- Volumetric BMD
- Differentiation between trabecular and cortical bone
- Single slice through the bone
- Cross-sectional moment of inertia (CSMI) is used as a bone strength parameter
- Bone mass and its distribution in the bone used to derive surrogate measures of bone strength
- Geometric parameters: periosteal and endosteal circumferences, trabecular and cortical bone areas
- Determine fat and muscle mass with ratios to bone mass

Behavioral assessments


49

Dr. Alan Hoberman Charles River Laboratories, USA

Types of neurobehavioral assessments								
Validated at Charles River (various sites, North America and Europe)								
	Rat	Rabbit	Dog	Nonhuman Primate				
Detailed clinical observations	✓ (Birth)	√ (≥ PND 4)	✓	✓				
Clinical neurobehavioral assessment	-	-	√ (≥ Day 28)	√ (≥ Day 7)				
Functional Observational Battery	✓ (≥ PND 4)*	√ (≥ PND 42)	✓	✓				
Locomotor Activity	√ (≥ PND 21)	-	-	-				
Auditory startle response	✓ (≥ PND 21)	-	-	-				
Learning and memory (water maze or eye blink)	✓ (≥ PND 21) Water Maze**	✓ (≥ PND 110) Eye Blink	-	-				
Active/passive avoidance	✓ (≥ PND 21)	-	-	-				
Social interactions	✓ (~PND 35)	-	-	-				
Nerve conductivity	-	-	√ (3-4 mon)					

	Functional observationa	l battery
	A temporal assessment of functional st	atus of animals
• /-	Animals are observed and scored on the follow Home cage observations Handling observations Open field observations Sensory & physiological observations Neuromuscular observations	ing sets of criteria:
· /	nter-observer reliability assessment Age of animals Sample size	

Dr. Alan Hoberman Charles River Laboratories, USA

Avoidance testing	
Passive avoidance	
Rat is placed in the brightly-lit side of the chamber, which is the more	
adverse side and when it moves into the dark (more preferred) chamber a foot shock is administered in which the rat quickly learns to remain or the light side of the chamber	
Original Design by Ellen McGlinchey	53

Avoidance testing
Active avoidance
Rat is placed in one side of a chamber where an adverse stimulus (light or tone) is elicited shortly followed by a footnote. The rat then quickly learns to associate the tone with the forthcoming shock, and will actively avoid the shock by moving to the other chamber
Original Design by Ellen McGlinchey

Auditory startle response	
Assessment of sensory, motor function and reactivity Auditory startle testing is a non-associative learning task conducted in a sound-attenuated room in specially designed enclosures to measure animal response	
Source: Charles River Laboratories, Inc.	2ر

Dr. Alan Hoberman Charles River Laboratories, USA

Dr. Elise Lewis Charles River Laboratories, USA

Auditory startle response

Assessment of sensory, motor function and reactivity

- Auditory startle testing is a non-associative learning task conducted in a sound-attenuated room in specially designed enclosures to measure animal response
- Each session consists of a 5 min acclimation period, followed by 50 auditory trials, each with an 8s intertrial interval
- Each trial consists of a 115 ± 5dB mixed frequency sound burst stimulus (~20ms duration). Responses are recorded during the first 100ms following onset of the startle stimulus for each trial
- Data are analyzed in 5 blocks of 10 trials each and peak response amplitude (PEAK) and latency to peak response (T_{peak}) in milliseconds are reported

Locomotor activity assessments

Assessment of the movement of an animal in a novel environment

- Locomotor activity assessments are also conducted in a sound-attenuated room in specially designed enclosures fitted with photobeams
- Exploratory, ambulatory and grooming behavior of the animal causes photobeams to be broken, and the number of beam breaks is documented
- Each test session is 60 min in duration and data ar analyzed in 6 blocks of 10 min each, and over the entire 60 min session
- Parameters evaluated:
 - Total counts

Ambulatory activity counts

Source: Charles River Laboratories, In

Learning and memory assessments

Assessment of an animal's ability to learn, execute and remember a complex task

Types of Learning & Memory Tests

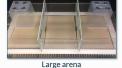
- Classical or Respondent Conditioning Tests
 - Eye Blink Conditioning
- Pavlov's Dog
- Operant Conditioning Tests
 - $\bullet \quad \text{Avoidance (Light/Dark Shuttle box with aversive stimulus of electrical shock of the extraction of the extraction$
 - Water maze, with the averse stimulus of swimming in water

56

T1	•	C 1.1	1. 1	C 11 1 1 11			
The scree	n versions	of these 9	slides haw	e full details	: At CANVIIO	ht and acknov	viedgements
1110 301 00	11 401 310113	01 111030		c run actans		i it ai iu acki iov	VICUECITICITIC

Dr. Alan Hoberman Charles River Laboratories, USA

Dr. Elise Lewis Charles River Laboratories, USA


Learning and memory assessments Assessment of an animal's ability to learn, execute and remember a complex task • Morris Water Maze (circular pool with submerged platform in different quadrants) • Cincinnati or Biel Water Maze (T-maze with a series of L or R directional choices with submerged platform at the end of all correct choices) A: Source: Charles River Laboratories, Inc. B: Original design by Ellen McGlinchey

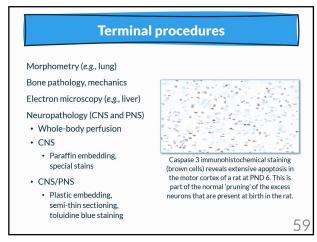
Social interaction

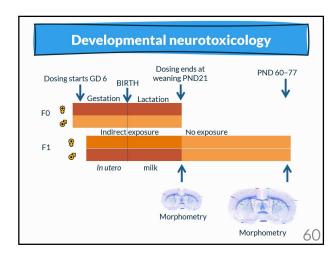
- The 3-chamber test assesses cognition in the form of general sociability and interest in social novelty in rodent models of CNS disorders
- Rodents normally prefer to spend more time with another rodent (sociability) and will investigate a novel intruder more so than a familiar one (social novelty)
- Based on these inclinations, the 3 chamber test can help identify rodents with deficits in sociability and/or social novelty

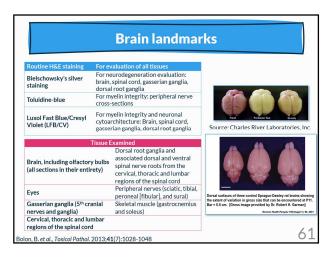
Small arena

57

Terminal procedures


5,5





Dr. Alan Hoberman Charles River Laboratories, USA

Dr. Alan Hoberman Charles River Laboratories, USA

Dr. Elise Lewis Charles River Laboratories, USA

Source: Charles River Laboratories, Inc. Source: Neuroscience Associates Dirial suddiess of three coults Sprague-Duelty of throis submitted by the Robert II. Gamed Bar + 8.5 cm. [Gress image provided by the Robert II. Gamed Bar + 8.5 cm. [Gress image provided by the Robert II. Gamed Bar + 8.5 cm. [Gress image provided by the Robert II. Gamed Bar + 8.5 cm. [Gress image provided by the Robert II. Gamed Bar + 8.5 cm. [Gress image provided by the Robert II. Gamed Bar + 8.5 cm. [Gress image provided by the Robert II. Gamed Bar + 8.5 cm. [Gress image provided by the Robert II. Gamed Bar + 8.5 cm. [Gress image provided by the Robert III. Gamed Bar + 8.5 cm. [Gress image provided by the Robert II. Gamed Bar + 8.5 cm. [Gress image provided by the Robert II. Gamed Bar + 8.5 cm. [Gress image provided by the Robert II. Gamed Bar + 8.5 cm. [Gress image provided by the Robert II. Gamed Bar + 8.5 cm. [Gress image provided by the Robert II. Gamed Bar + 8.5 cm. [Gress image provided by the Robert II. Gamed Bar + 8.5 cm. [Gress image provided by the Robert II. Gamed Bar + 8.5 cm. [Gress image provided by the Robert II. Gamed Bar + 8.5 cm. [Gress image provided by the Robert II. Gamed Bar + 8.5 cm. [Gress image provided by the Robert II. Gamed Bar + 8.5 cm. [Gress image provided by the Robert II. Gamed Bar + 8.5 cm. [Gress image provided by the Robert II. Gamed Bar + 8.5 cm. [Gress image provided by the Robert II. Gamed Bar + 8.5 cm. [Gress image provided by the Robert II. Gamed Bar + 8.5 cm. [Gress image provided by the Robert II. Gamed Bar + 8.5 cm. [Gress image provided by the Robert III. Gamed Bar + 8.5 cm. [Gress image provided by the Robert II. Gamed Bar + 8.5 cm. [Gress image provided by the Robert II. Gamed Bar + 8.5 cm. [Gress image provided by the Robert II. Gamed Bar + 8.5 cm. [Gress image provided by the Robert II. Gamed Bar + 8.5 cm. [Gress image provided by the Robert II. Gamed Bar + 8.5 cm. [Gress image provided by the Robert II. Gamed Bar + 8.5 cm. [Gress image provided by the Robert II. Gamed Bar + 8.5 cm. [Gre

١							Brain landma	rks
L	Leve	els (fr	rom	Figu	re 1)			
1	2	3	4	5	6	7	Brain structures (listed from rostral to caudal)	
<							Olfactory bulb	
Ī	Х						Anterior commissure	AND
	Х						Septal nuclei	
П	Х						Caudate/putamen	
	Х	Х	Х				Cerebral cortex (frontal, parietal, temporal, occipital)	7-21 6 2 2
	Х	Х					Corpus callosum	
	Х	Х					Internal capsule	
	Х	Х					External capsule	
		Х					Optic tract	A
		Х					Amygdala	
		Х	Х				Hippocampus	
		Х					Thalamus	
		Х					Hypothalamus	
		Х	Х				Cerebral peduncles	
			Х				Midbrain, rostral	R
				Х			Midbrain, caudal	
				Х			Pons	11/2
				Х	Х	Х		JUV
				Х	Х	Х		
					Х		Deep cerebellar nuclei	
			Х	Х	Х	Х		
Ī					Х	Х		C
						Х	Medulla oblongata	-
П		Х				Х	Choroid plexus	

Developmental neurotoxicology

- There are a lot of techniques that have been developed for DIT
- The functionality of the immune system can be tested
- Mouse is more thoroughly characterized however, DIT is most efficiently performed in rats
- $\bullet \quad \mathsf{DIT}\,\mathsf{studies}\,\mathsf{may}\,\mathsf{be}\,\mathsf{conjoined}\,\mathsf{with}\,\mathsf{existing}\,\mathsf{DART}\,\mathsf{protocols}$
- Histopathologic evaluation will have a role in detection of xenobiotic-associated immunomodulation although alone it will probably be insufficient

63

Dr. Alan Hoberman Charles River Laboratories, USA

HSTalks	
By leading world experts	
	_