Imatinib as a paradigm of targeted cancer therapies

Brian J. Druker, MD
Oregon Health & Science University
Cancer Institute
Portland, Oregon

Historical perspective on CML

1845

First description of CML

1985

BCR-ABL

Specific therapy for CML

2001

Clinical description of CML
Chronic myeloid leukemia (CML)

- 15 - 20% of all leukemias
- 1 - 2 cases per 100,000 per year

Average age of onset - 50 - 60 yrs of age

CML

- Tri-phasic illness
 - Chronic or stable phase
 - Accelerated phase
 - Blast crisis

95% at presentation

Advanced disease
Stable phase of CML

- Median duration 4 - 6 years
- Massive expansion of myeloid cells
- Maturation of myeloid cells is normal

Advanced stages of CML

- A malignant clone loses the capacity for terminal differentiation resulting in disease progression to an acute leukemia
- Highly refractory to therapy

Molecular pathogenesis of CML

The screen versions of these slides have full details of copyright and acknowledgements
Imatinib as a paradigm of targeted cancer therapies
Prof. Brian J. Druker

Molecular pathogenesis of CML

- Fusion gene/protein generated from t(9;22)
- Detected in 95% of patients with CML
- Causative molecular abnormality of CML
- Constitutively activated intracellular tyrosine kinase
 - Kinase activity is required for function
Imatinib as a paradigm of targeted cancer therapies
Prof. Brian J. Druker

BCR-ABL as a therapeutic target

Imatinib
Gleevec™, Glivec®
STI571 (CGP 57148B)

Summary of preclinical data

- Imatinib is a potent and selective inhibitor of the ABL, PDGFR and KIT tyrosine kinases
- Imatinib selectively kills BCR-ABL-expressing cells in vitro and in vivo
- Highly bioavailable as an oral formulation

Imatinib as a paradigm of targeted cancer therapies
Prof. Brian J. Druker

Phase I clinical trials of Imatinib

- 300 mg per day and above
- Significant therapeutic benefits
- Minimal side effects
- Chronic phase - interferon failures
 - CHR - 98%, 96% durable
- Blast crisis
 - 59% response rate, 18% durable

500 mg Imatinib

Phase II studies

- Chronic phase patients
- Failed interferon therapy
- Accelerated phase
- Blast crisis

The screen versions of these slides have full details of copyright and acknowledgements
Imatinib as a paradigm of targeted cancer therapies

Prof. Brian J. Druker

Summary of phase II data

Relapse rate (4 years)

- Chronic (IFN failure) 26%
- Accelerated 73%
- Blast 95%

Phase III randomized study of Interferon + Ara-C vs. Imatinib in newly diagnosed patients with CML

The screen versions of these slides have full details of copyright and acknowledgements
Imatinib as a paradigm of targeted cancer therapies
Prof. Brian J. Druker

Enrollment
- 177 centers in 16 countries
- 1106 patients enrolled
 - June 2000 to January 2001
- 553 patients randomized to each treatment:
 - Imatinib 400 mg per day
 - Interferon plus Ara-C

Summary of 18 month data

Progression-free survival
- 95% CI
 - 91-96
- 81-88
- Progression events:
 - 1% AP/BC
 - 4.5% loss of MCyR
 - 2.4% loss of CHR
 - 1.4% CML-unrelated deaths

The screen versions of these slides have full details of copyright and acknowledgements
Summary of CML clinical trials

- Imatinib yields high response rates with minimal toxicity in all phases of CML
- Durable responses are achieved in chronic phase patients
- Resistance in advanced phase patients is common

Why do some patients relapse?

Is BCR-ABL kinase inhibited?

- No
 - Drug efflux
 - BCR-ABL amplification
 - Kinase mutations
 - Drug metabolism
 - Others

- Yes
 - Additional mutations

BCR-ABL substrates

Tyrosine phosphorylated proteins in CML patient samples

- BCR-ABL
- CRKL
- p62DOK
- STAT5
Imatinib as a paradigm of targeted cancer therapies
Prof. Brian J. Druker

CRKL

- Most heavily tyrosine phosphorylated protein in CML cells
- Direct substrate of BCR-ABL
- Required for BCR-ABL transformation

Reactivation of BCR-ABL kinase at relapse

Why do some patients relapse?

Is BCR-ABL kinase inhibited?

No

- BCR-ABL amplification
- Kinase mutations
- Drug efflux
- Drug metabolism
- Others
Imatinib as a paradigm of targeted cancer therapies
Prof. Brian J. Druker

ABL kinase domain mutations

Inhibition of cell proliferation by Imatinib

Contact sites of ABL and Imatinib

The screen versions of these slides have full details of copyright and acknowledgements
Imatinib as a paradigm of targeted cancer therapies
Prof. Brian J. Druker

P-loop mutants

Structure of the ABL kinase domain

Imatinib vs. AMN107

Weisberg, E. et al. (2005) Cancer Cell 7, 129-141

Nagar et al. Cancer Research, 2002

The screen versions of these slides have full details of copyright and acknowledgements
Imatinib as a paradigm of targeted cancer therapies
Prof. Brian J. Druker

Inhibition of cell proliferation by AMN107

SRC/ABL inhibitors for Imatinib-resistance

- SRC inhibitors were shown to inhibit ABL
 - (JF Dorsey et al., Cancer Res, 60:3127, 2000)
- Bind to the active form of ABL
- 10-100 fold more potent than Imatinib against ABL
- Inhibit more kinases than imatinib

Inhibition of cell proliferation by a SRC/ABL inhibitor
Clinical trials of novel ABL inhibitors

- AMN107 and BMS-354825 (dasatinib, dual SRC/ABL inhibitor)
- Significant activity in Imatinib-resistant patients
- Activity observed against all Imatinib-resistant mutants except T315I
- Relapses common in advanced phase
 - T315I
 - Other causes

Imatinib and Gastrointestinal Stromal Tumor (GIST)

Gastrointestinal Stromal Tumor

- GIST: intestinal sarcoma (formerly intestinal leiomyosarcoma) – KIT positive
- US annual incidence: ~5,000 cases
- Response rates to chemotherapy <5%
- Activating KIT mutations are present in the majority of patients
Imatinib as a paradigm of targeted cancer therapies
Prof. Brian J. Druker

Imatinib response data - GIST

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>n=147</td>
<td></td>
</tr>
<tr>
<td>Partial response</td>
<td>54%</td>
</tr>
<tr>
<td>Stable disease</td>
<td>28%</td>
</tr>
<tr>
<td>Progression</td>
<td>14%</td>
</tr>
</tbody>
</table>

PET scan - GIST

![PET scan images](image)

Pre - 12/7/00
1/9/01

G. Demetri, et al

Extending the Imatinib paradigm

Target expression versus response

The screen versions of these slides have full details of copyright and acknowledgements
Imatinib as a paradigm of targeted cancer therapies
Prof. Brian J. Druker

Expression versus response

<table>
<thead>
<tr>
<th>Target Frequency</th>
<th>Target Response Rate</th>
<th>Observed Response Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 patients</td>
<td>100%</td>
<td>60%</td>
</tr>
<tr>
<td>100 patients</td>
<td>50%</td>
<td>60%</td>
</tr>
<tr>
<td>100 patients</td>
<td>25%</td>
<td>60%</td>
</tr>
<tr>
<td>100 patients</td>
<td>10%</td>
<td>60%</td>
</tr>
</tbody>
</table>

Imatinib responses in advanced malignancies

<table>
<thead>
<tr>
<th>Disease</th>
<th>Target Expression</th>
<th>Partial Response Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>CML blast crisis</td>
<td>BCR-ABL+ 100%</td>
<td>50-60%</td>
</tr>
<tr>
<td>GIST</td>
<td>KIT + >90%</td>
<td>50-60%</td>
</tr>
</tbody>
</table>

Expression of a molecular target correlates with response to an agent directed against that target.
Imatinib as a paradigm of targeted cancer therapies
Prof. Brian J. Druker

Is expression sufficient to predict response?

<table>
<thead>
<tr>
<th>Target Expression</th>
<th>Target Activation</th>
<th>Target Response Rate</th>
<th>Observed Response Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 patients</td>
<td>100%</td>
<td>90%</td>
<td>80%</td>
</tr>
<tr>
<td>100 patients</td>
<td>100%</td>
<td>50%</td>
<td>80%</td>
</tr>
<tr>
<td>100 patients</td>
<td>100%</td>
<td>25%</td>
<td>80%</td>
</tr>
<tr>
<td>100 patients</td>
<td>100%</td>
<td>10%</td>
<td>80%</td>
</tr>
</tbody>
</table>

Response to Imatinib in GIST patients

M. Heinrich, J. Fletcher, et al

P<0.0001
Imatinib as a paradigm of targeted cancer therapies
Prof. Brian J. Druker

Gefitinib and Erlotinib

- Target EGF receptor
- Broadly expressed in cancer
- 10-20% response rate in advanced non-small lung cancer
 - No correlation with EGFR expression
 - Female, non-smokers, bronchoalveolar histology
- Responding patients have EGFR mutations
 - More sensitive to inhibitors than wild-type receptor

Expression of a molecular target does not guarantee a response to an agent that modulates the target

What does it mean if the response rate to a molecularly targeted agent is low?

- Is the target expressed?
- Is the target modulated by the agent?
- Is the target critical to the growth or survival of the tumor?
- Is there a subset of patients who respond well?
Response to Imatinib in GIST patients

M. Heinrich, J. Fletcher, et al

PDGFR activating mutations in GIST

- 6/16 (37.5%) wild-type KIT patients had PDGFRα activating mutations in two different exons
- One set of mutations was imatinib sensitive
 - 2/3 patients had PRs
- Careful study of subsets of patients may reveal important insights

Lessons learned from clinical trials with Imatinib

IT’S THE TARGET!

Good Target + Good Drug

= Good Results
What makes BCR-ABL such an ideal target?

- Causative molecular abnormality of CML
- Sole oncogenic event early in the disease
- Ease of selection of patients for clinical studies based on the presence of the target
 - Ph chromosome – BCR-ABL

Why is KIT an ideal target in GIST?

- KIT mutations are seen in early, incidental tumors
- KIT mutations are acquired before cytogenetic abnormalities
- Familial syndromes of GIST have germline KIT mutations

Lessons learned from clinical trials with Imatinib

Old News

Treatment earlier in the course of a disease yields better responses
Imatinib as a paradigm of targeted cancer therapies
Prof. Brian J. Druker

Responses by phase of disease

- Chronic phase (new dx'd)
- Chronic phase (IFN failure)
- Accelerated Phase
- Blast crisis

Translating the success of Imatinib to other malignancies

- Identify the appropriate therapeutic targets
 - Early molecular pathogenetic events
- Treat early in the course of the disease
 - Develop reliable techniques for early detection
- Match the right patient with the right drug

The 21st century

- Identification of the molecular pathogenetic events in all cancers
- Development of improved diagnostic/imaging techniques
- Improved methods of drug discovery
- Understanding of an individual’s cancer risk based on genetic analyses
Acknowledgements

- Oregon Health & Science University Cancer Institute
- Novartis
- International Imatinib Study Group
- Funding agencies