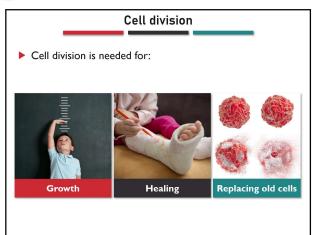
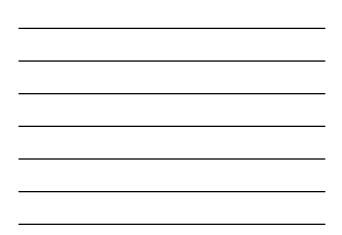
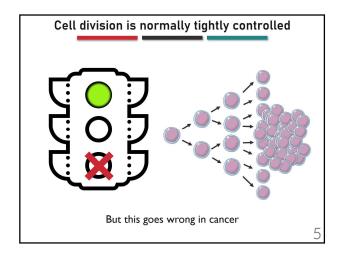


Prof. Tim Elliott - University of Oxford, UK

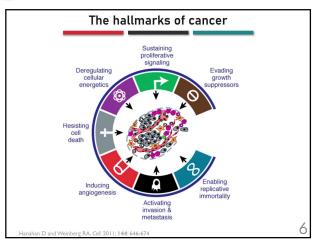




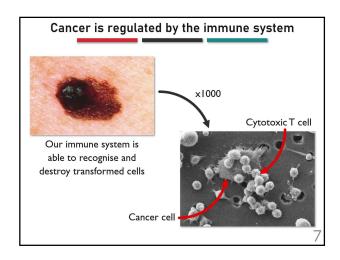


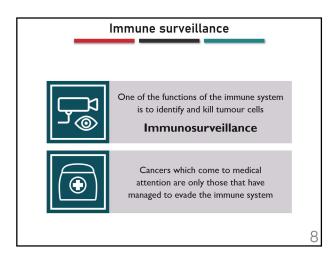
Prof. Tim Elliott – University of Oxford, UK

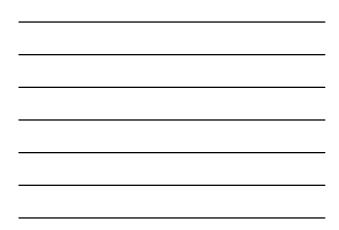
In fac	ct, in the past min	iute
Your body has made		
300 million new red blood cells	l 2,000 million new gut cells	40,000 new skin cells
		4

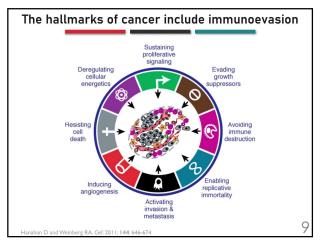


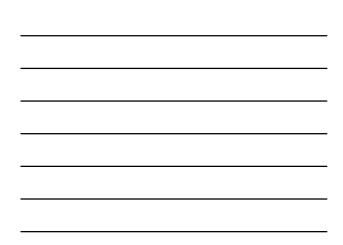





Prof. Tim Elliott – University of Oxford, UK







Prof. Tim Elliott – University of Oxford, UK

HSTalks

Evidence for immunosurveillance

The high frequency of cancers in immunosuppressed patients
 Extremes of age

- Primary¹ and secondary immunodeficiency²
 - Immunosuppression that arises from HIV infection

¹Mayor PC. et al., J Allergy Clin Immunol. 2018; 141: 1028-1035 ²Marcus JL. et al., Cancer Epidemiol Biomarkers Prev. 2015; 24: 116

10

Evidence for immunosurveillance

The high frequency of cancers in immunosuppressed patients

- Extremes of age
- Primary¹ and secondary immunodeficiency²
 - Immunosuppression that arises from HIV infection
- Immunosuppressive drugs (transplants)³

IT and Descotes J. Toxicology. 2003; 185: 229-4

The screen versions of these slides have full details of copyright and acknowledgements

Prof. Tim Elliott - University of Oxford, UK

Evidence for immunosurveillance

- The high frequency of cancers in immunosuppressed patients
 - Extremes of age
 - Primary¹ and secondary immunodeficiency²
 - Immunosuppression that arises from HIV infection
 - Immunosuppressive drugs (transplants)³
- Increased incidence of tumours in neonatal thymectomised⁴ and immunocompromised mice⁵
 - Implies that T cells are important in immunosurveillance

⁴O'Gara RW and Ards J. J National Cancer Institute. 1961; **27**: 299-309 ⁵Huang P. et al., Comp. Med. 2011; **61**: 227-234

Evidence for immunosurveillance

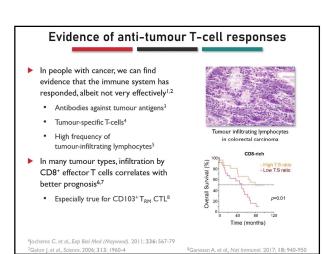
- The high frequency of cancers in immunosuppressed patients
 Extremes of age
 - Primary¹ and secondary immunodeficiency²
 - Immunosuppression that arises from HIV infection
 - Immunosuppressive drugs (transplants)³
- Increased incidence of tumours in neonatal thymectomised⁴ and immunocompromised mice⁵
 - Implies that T cells are important in immunosurveillance
- Genetically modified mice that lack cytotoxic machinery, such as perforin-deficient mice, have a higher incidence of spontaneous tumours⁶

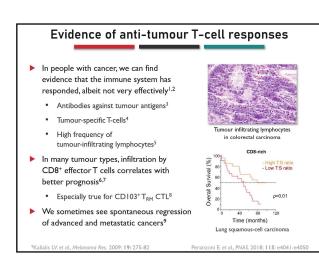
⁵Smyth MJ. et al., J Exp Med. 2000; **192**: 755-60

Evidence of anti-tumour T-cell responses

 In people with cancer, we can find evidence that the immune system has responded, albeit not very effectively^{1,2}

¹Vesely MD. et al., Ann Rev Immunol. 2011; **29**: 235-271 ²Finn OJ. Ann Oncol. 2012; **23(suppl 8)**:VIII6-VIII9

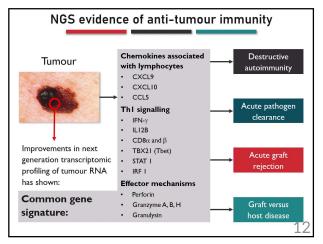

11

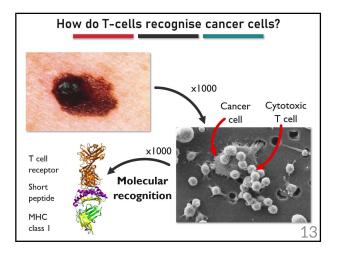


Prof. Tim Elliott - University of Oxford, UK

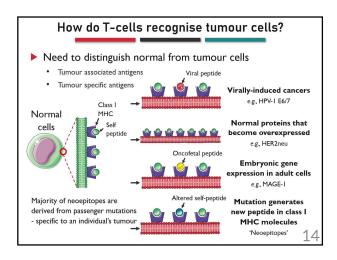
Evidence of anti-tumour T-cell responses

- In people with cancer, we can find evidence that the immune system has responded, albeit not very effectively^{1,2}
 - Antibodies against tumour antigens³
 - Tumour-specific T-cells⁴
 - High frequency of tumour-infiltrating lymphocytes⁵
- ³Reuschenbach M. et al., Cancer Immunol Immunother. 2009; **58**: 1535-44 ⁴Godet Y. et al., Clin Cancer Research. 2012; **18**: 2943-2953 ⁵Mlecnik B

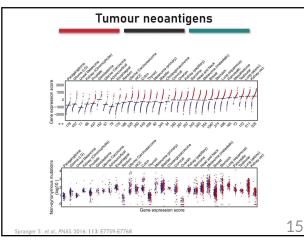


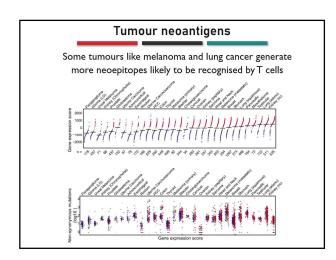


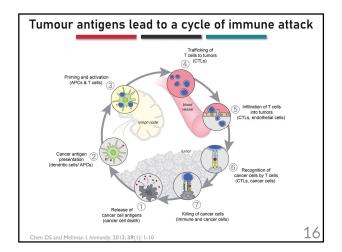
The screen versions of these slides have full details of copyright and acknowledgements



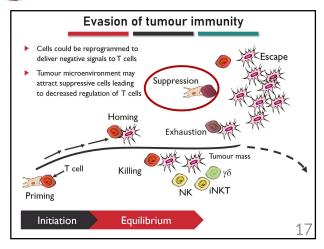
Prof. Tim Elliott – University of Oxford, UK

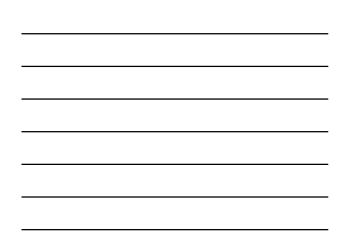


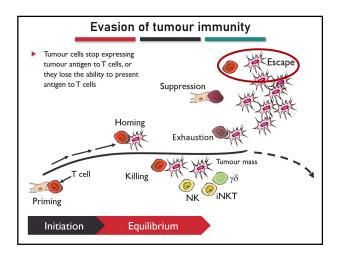


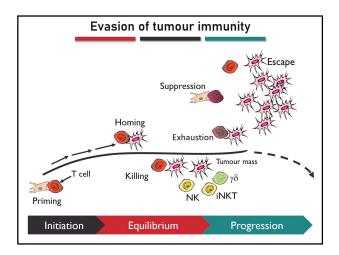


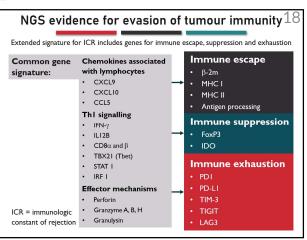
Prof. Tim Elliott – University of Oxford, UK








Prof. Tim Elliott – University of Oxford, UK



Prof. Tim Elliott – University of Oxford, UK

HSTalks

Immune escape

- MHC I antigen processing signature correlates with ICR signature and are frequently mutated in multiple cancer types¹
 - Structural proteins HLA-A/B
 - β-2 microglobulin
 - TAP1/2
 - Tapasin
- Cancer cells evolve to escape HLA restriction through mutation of HLA class I genes²

¹McGranahan N. et al., Cell. 2017; **171**: 1259-1271 ²Tran E. et al., N Engl J Med. 2016; **375**: 2255-2262

19

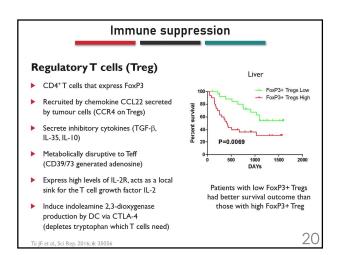
Immune escape

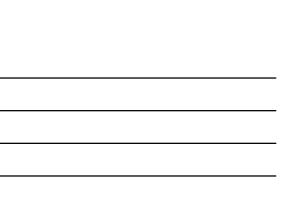
- MHC I antigen processing signature correlates with ICR signature and are frequently mutated in multiple cancer types¹
 - Structural proteins HLA-A/B
 - β-2 microglobulin
 - TAPI/2
 - Tapasin
- Cancer cells evolve to escape HLA restriction through mutation of HLA class I genes²
- The dominant oncogenic mutations in individual cancers tend to occur in peptides that are poorly presented by the HLA allotypes present in the patient³

³Marty R. et al., Cell. 2017; **171**: 1272-1283

Prof. Tim Elliott – University of Oxford, UK

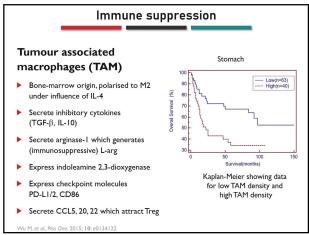
Immune escape

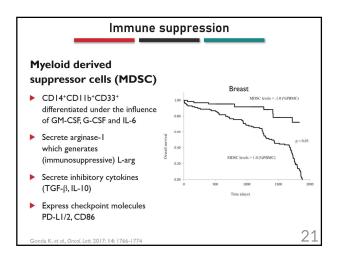

- Homozygosity at HLA class I associates with poor response to immunotherapy⁴
 - The more diverse the HLA class I proteins expressed by tumour cells, the higher the cancer of neoepitopes
 - Therefore, loss of homozygosity reduces the number of potential neoepitopes for recognition

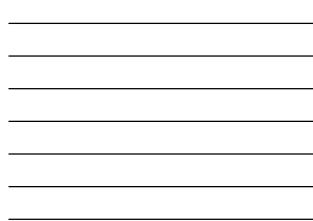

Immune escape

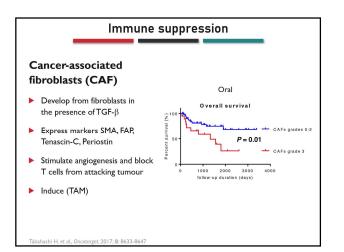
2018; 359: 582-58

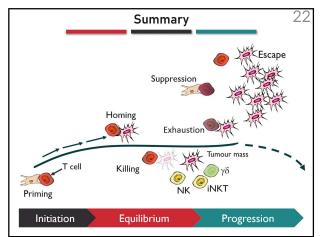
- Homozygosity at HLA class I associates with poor response to immunotherapy⁴
 - The more diverse the HLA class I proteins expressed by tumour cells, the higher the cancer of neoepitopes
 - Therefore, loss of homozygosity reduces the number of potential neoepitopes for recognition
- Inverse relationship between tumour associated antigen expression and CD8⁺ CTL responses in mouse models⁵ and some human cancers⁶

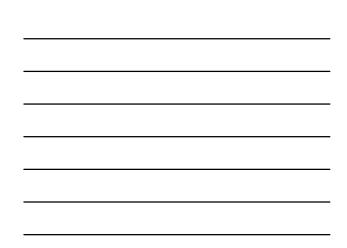

⁵Schirrmacher V. et al., Invasion Metastasis. 1981; 1: 175-194 9Jager E. et al., Int.J Cancer. 1996; **66**: 470-6




6,


Prof. Tim Elliott – University of Oxford, UK





Prof. Tim Elliott – University of Oxford, UK

HSTalks

The screen versions of these slides have full details of copyright and acknowledgements