

	at is the "function" of the nflammatory response?	3
1	Role of inflammation in host defense from pathogens as its main purpose	
2	Non-infective (sterile) inflammation and its main purposes	

Types of med let us survive		5
	(5)	
Pathogen control	Damage control	
Decreases the number of pathogens (killing or growth inhibition)	Protects from the damage induced by the infection	
Immunity		
Innate Adaptive		

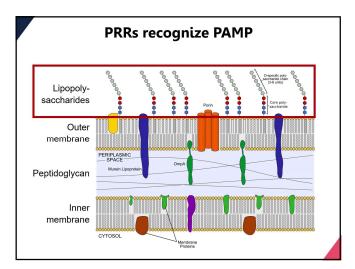
-			
	_	 	

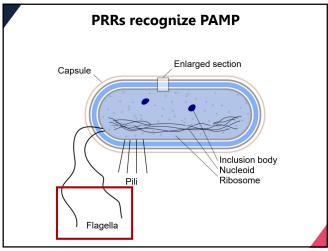
Prof. Pietro Ghezzi - University of Urbino, Italy

Innate i	immunity	(
·	cell-mediated response of the ducing the number of pathogens	
Fast	Germline encoded	
Activated immediately (minutes) after infection	Innate immune receptors that recognize pathogens:	
Unlike adaptive immune	Are germline encoded	
response (days needed)	Do not require previous exposure to the pathogen for recognition	

The acute inflammatory to an infection - over	
Cells recognize pathogens through pattern recognition receptors (PRR)	
PRR activate transcription factors leading to expression of inflammatory genes: cytokines, chemokines and other inflammatory mediators	Macrophages
3 Cytokines induce systemic effects (e.g. fever and acute-phase response)	
Circulating leukocytes (neutrophils and monocytes) extravasate from the blood to the tissue at the site of infection where they eliminate the pathogens	Neutrophils
When pathogens are eliminated, inflammation resolves with minimal tissue damage	

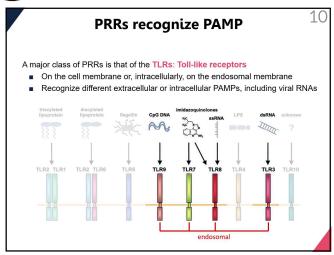
Pattern recognition receptors (PRRs) Receptors of adaptive immunity Receptors of innate immunity ■ B-cell receptors and T-cell ■ Do not recognize receptors specific antigens ■ Huge diversity (trillions of ■ Recognize molecular patterns possible conformations) common to many pathogens (pathogen-associated molecular ■ Recognize specific antigens, patterns - PAMP) such as a portion of a foreign ■ Less specific but able to protein (epitope) distinguish potentially pathogenic microbes from non-pathogenic ones

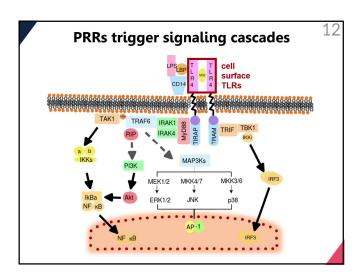


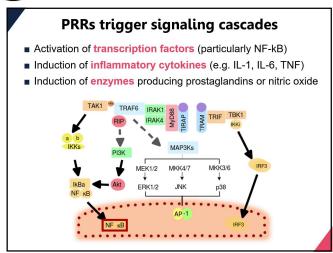


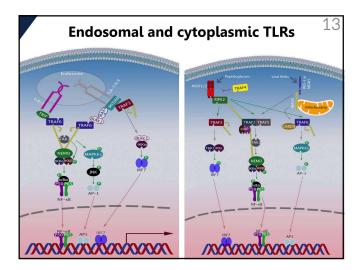
Prof. Pietro Ghezzi - University of Urbino, Italy

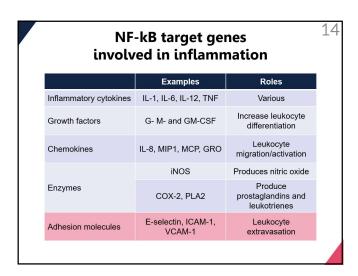
PRRs recognize PAMP

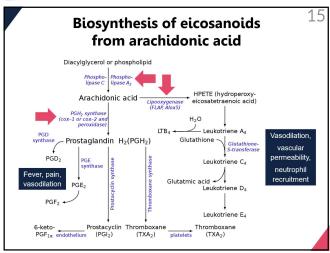

- Unlike receptors of adaptive immunity, receptors of innate immunity cannot learn and adapt like those of adaptive immunity
- Therefore must recognize highly conserved structures (cell wall, nucleic acids)
- Examples of PAMP are lipopolysaccharides (LPS) or flagellin (component of the flagella) of gram-negative bacteria

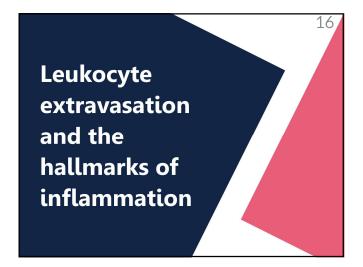


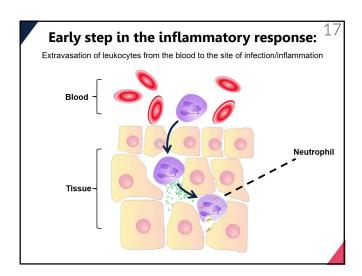


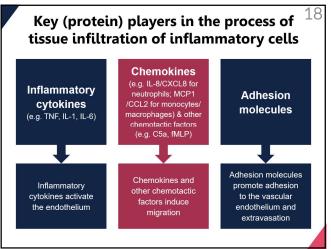

	PRRs recognize PAMP
	PRRs present in the cytoplasm (to recognize viral RNAs or intracellular bacterial products):
	RLRs: Retinoic acid-inducible gene-I (RIG-I)-like receptors RIG-I, MDA5 (viruses)
(<u>.</u>)	NLRs: Nucleotide-binding oligomerization domain (NOD)-like receptors NOD1, NOD2, NALP1, IPAF, NAIP5 (bacteria) NALP3 (bacteria, viruses) CLR (fungi)

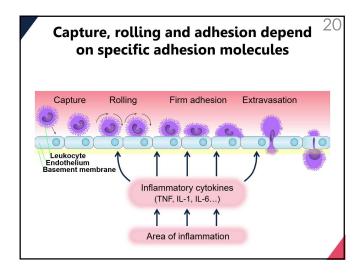


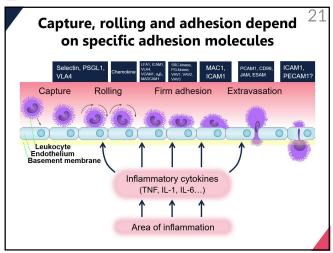


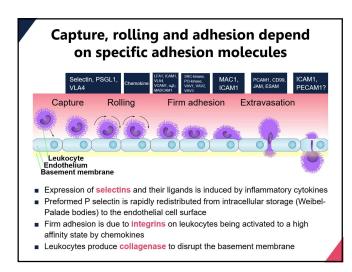


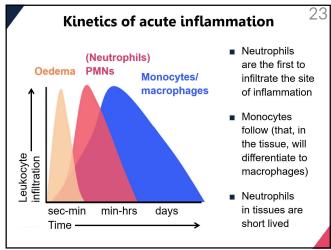


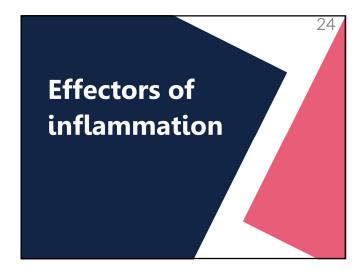


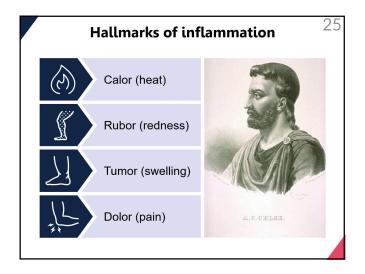


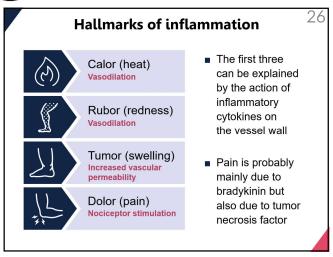


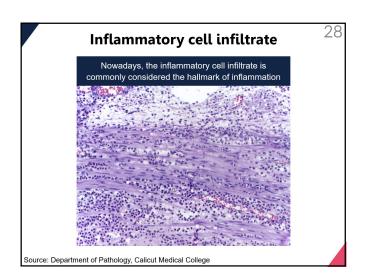

	Main steps in the infiltration of inflammatory cells
1	Vasodilation and increased vascular permeability (cytokines, kinins)
2	Leukocytes rolling and adhesion to the vascular endothelium
3	Normal endothelium does not bind circulating leukocytes; needs activation by cytokines
4	Migration through the endothelium and the vessel wall
5	Migration to tissues following a chemotactic stimulus

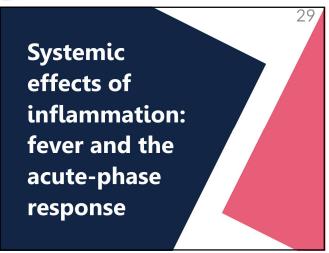





	Summary 22
1	Leukocytes are recruited to the site of infection by chemotactic factors: bacterial molecules such as fMLP; complement products (e.g. C5a); chemokines (e.g. IL-8)
2	Requires extravasation of circulating leukocytes (neutrophils & monocytes)
3	Extravasation is associated to increased vascular permeability (e.g. by TNF or inflammatory eicosanoids such as prostaglandins and leukotrienes)
4	Circulating leucocytes arrest because they bind the vascular endothelium via adhesion molecules, mainly endothelial selectin
5	Binding is strengthened due to the binding of leukocyte integrins (activated by chemokines) to their endothelial ligands (e.g. ICAM-1)
6	Transendothelial passage involves other adhesion molecules (e.g. PECAM-1) and collagenase to disrupt the basement membrane

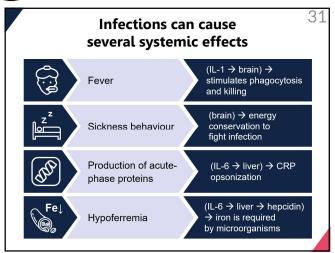




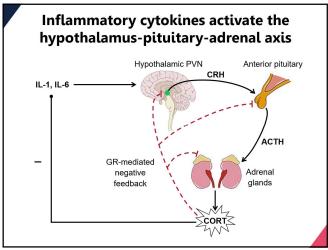

	tor mechanis s in the defer		f infiltrated painst pathogens	27
	tosis (neutrophils, es/macrophages)	5	Acidification (neutrophils, monocytes/macrophages)	
2 Antimicr (neutroph	obial peptides iils)	6	Inflammatory mediators (monocytes/macrophages)	
	rymes (neutrophils, es/macrophages)	7	Antigen presentation (monocytes/macrophages)	
4 nitrogen	oxygen and species (neutrophils, es/macrophages)	8	Cytokines (monocytes/macrophages)	

Prof. Pietro Ghezzi – University of Urbino, Italy

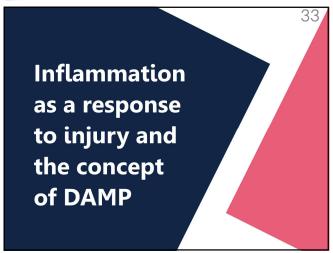
	Infections c several syster		30
	Fever		
zz	Sickness behaviour	Anorexia, sleepiness, fatigue	
(MD)	Production of acute- phase proteins	E.g. C-reactive protein (CRP)	
Fe↓	Hypoferremia		

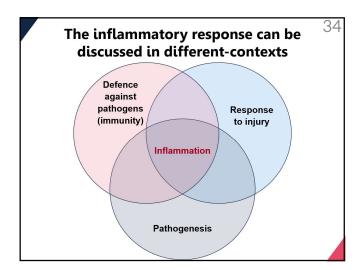

Infections can cause several systemic effects

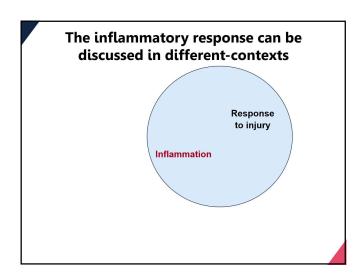
- These are largely due to the pleiotropic activity of cytokines outside the immune system
- Pleiotropic: cytokines can act on many different types of cells, both within and outside of the immune system

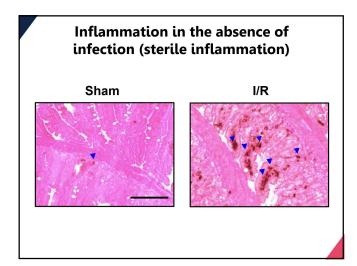


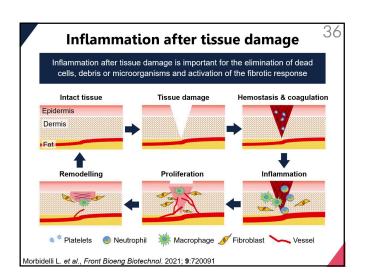
Prof. Pietro Ghezzi - University of Urbino, Italy

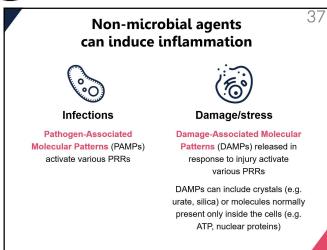

Inflammatory cytokines activate the hypothalamus-pituitary-adrenal axis

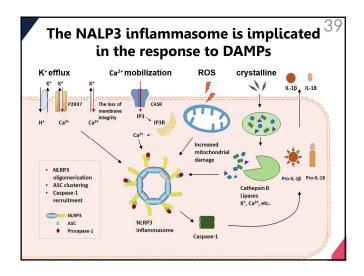

Inflammatory cytokines activate the hypothalamus-pituitary-adrenal axis (HPAA) resulting in an increase in blood corticosteroids, potent anti-inflammatory molecules

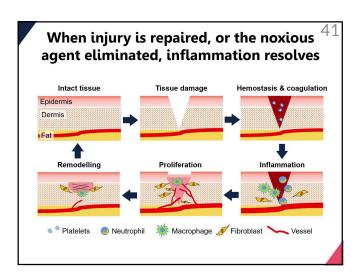


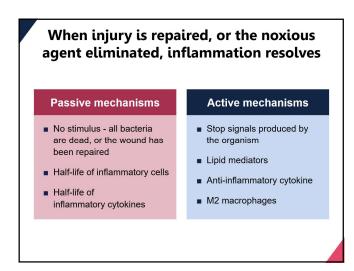


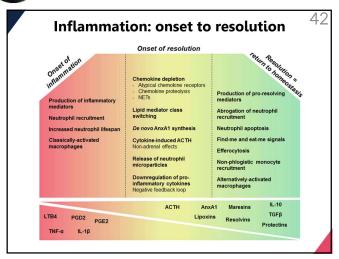


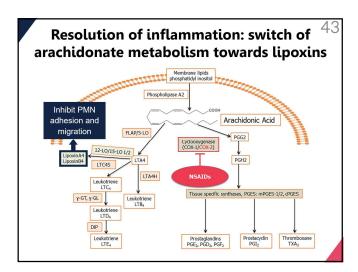


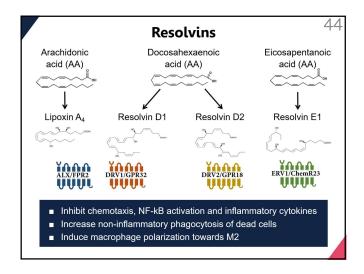


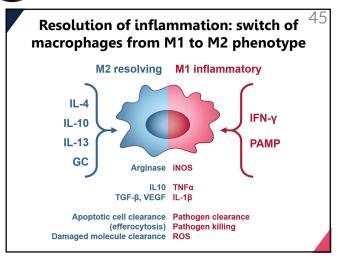

Main damage molecular	
DAMP	Receptor
Nuclear proteins (histones, HMGB1)	TLR2,4 and 9; RAGE
DNA	TLR9, NALP3
ATP	P2X7/NALP3
Heat-shock proteins	TLR2, 4
S100	TLR2, 4 and RAGE
ECM components (fibrinogen, hialuronate, tenascin, heparans)	TLR2,4; NALP3
Urate crystals, cholesterol, asbestos	NALP3
Oxidative stress	NALP3

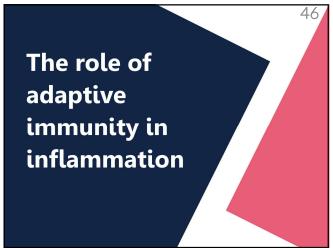


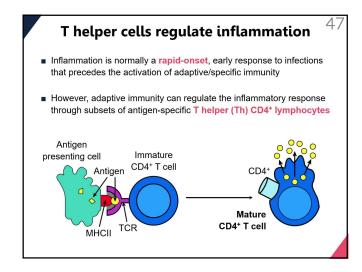


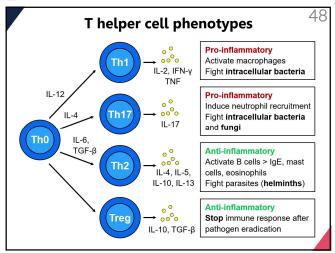




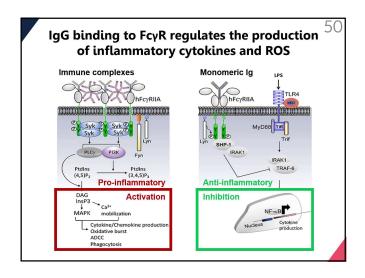


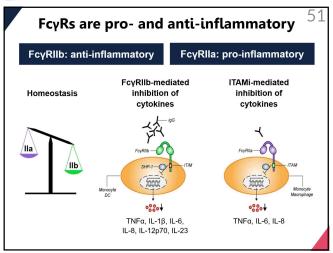


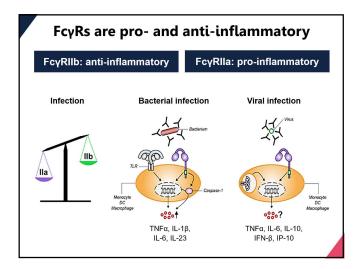


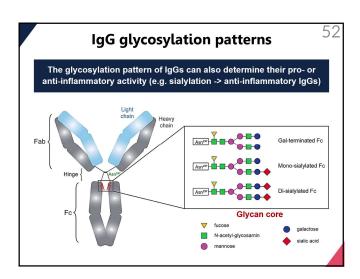


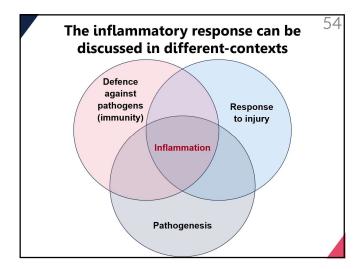


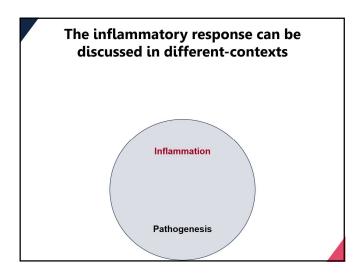


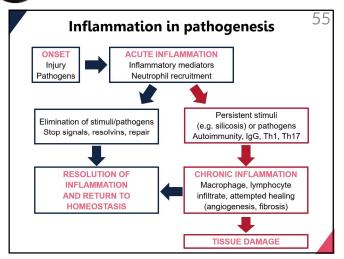


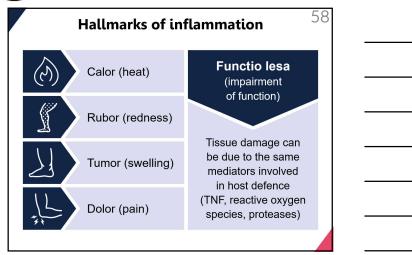




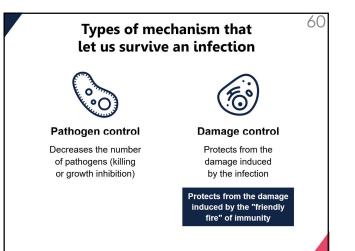








Chronic inflammation is not just about duration		
Acute inflammation	Chronic inflammation	
Inflammatory mediators, neutrophil recruitment	Macrophage, lymphocyte infiltrate, attempted healing (angiogenesis, fibrosis)	


Differences between acute and chronic inflammation						
	Acute	Chronic				
Time of onset	Minutes/hours	Days				
Duration	Short-term (days, weeks)	Persistent (months, years)				
Cell infiltrate	Neutrophils	Mono/mac, lymphocytes, plasma cells				
Magnitude	+++	+				
Results	Removal of trigger, repair	Collateral damage				
Biomarkers	IL-6, CRP	low CRP (need hsCRP)				
Key cytokines	IL-1, IL-6, TNF, chemokines	IL-12, IL-17, IFN-γ				
Systemic effects (acute-phase)	+++	+				
Prevalent site	Vessels	Tissues				
Fibrosis, angiogenesis	+	+++				
Tissue damage	+	+++				

	Types of mechanism that let us survive an infection	
6.0	(5)	
Pathogen control	Damage control	
Decreases the number of pathogens (killing or growth inhibition)	Protects from the damage induced by the infection	

Prof. Pietro Ghezzi - University of Urbino, Italy

Types of mechanism that let us survive an infection

- This is arguably the most successfully developed field of immunopharmacology
- Nowadays, the top sale in biologics are antibodies that inhibit specific inflammatory cytokines (e.g. IL-1, IL-6, TNF), that are used for the therapy of chronic inflammatory diseases

Thanks for your attenti	ion!
The author does not have any financial interest to disclose	

