

Prof. Adam Kirton - University of Calgary, Canada

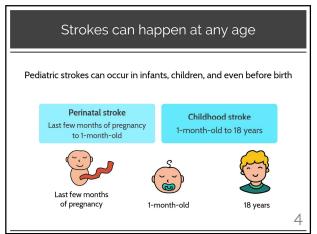
Disclosures

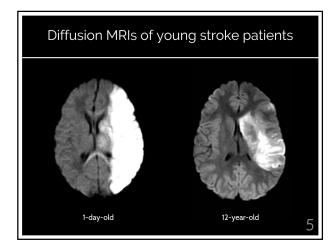
- ▶ Brain stimulation is experimental
- ▶ Therapeutic applications off label
- ▶ Editor, Pediatric Brain Stimulation
- ▶ Boards and Scientific Advisory: HSFA, ICNA, BBC, CSBPG, CB
- ► Funding: CIHR, AIHS, HSFC, HSFA, CPRA, CPIRF, HBI, CSOM, VRPRI, NDN

-

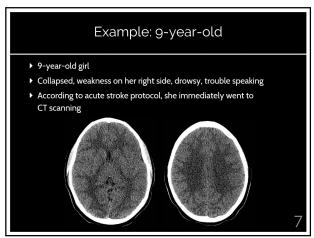
Learning objectives

Recognize the presentations, causes, and management of stroke in neonates and children


Appreciate the role of developmental neuroplasticity in determining the diverse range outcomes that occur

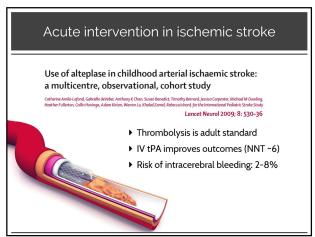

3

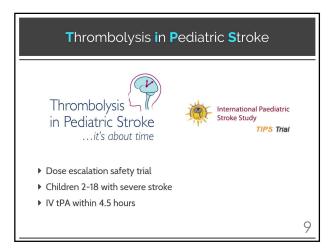
Prof. Adam Kirton - University of Calgary, Canada

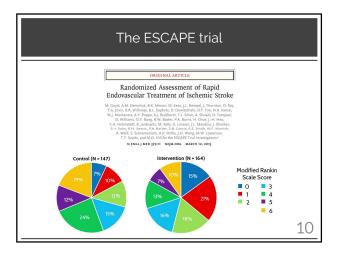


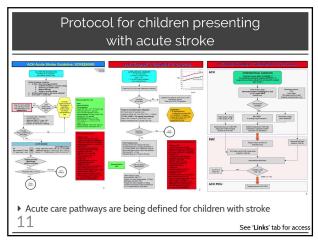
"Pressing issues and promising directions"	
Paediatric stroke: pressing issues and promising directions	5
Adam Kirton, Gabrielle deVeber Lancet Neurol 2015; 14: 92-10:	ı
Acute treatment dilemmas in childhood stroke	
 Advances in childhood cerebral arteriopathy 	
▶ Neurorehabilitation: harnessing the plasticity of the developing brain	
▶ Perinatal stroke: searching for disease biology	
▶ Neonatal CSVT: diagnostic challenges in a treatable disease	
► Translating knowledge: patients, parents, policy makers	
	6

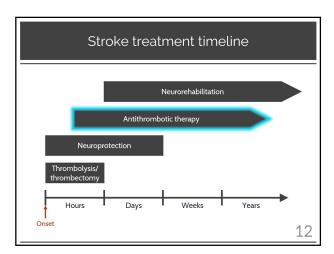
The screen versions of these slides have full details of copyright and acknowledgements

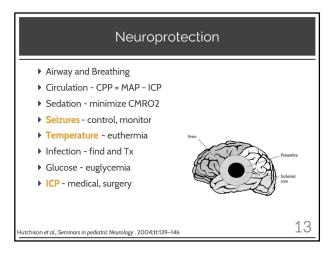


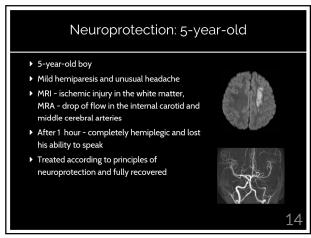

Example: 9-year-old
 CT angiogram - acute ischemic stroke in the left MCA territory Treatment: inter-venous tPA and considered for interventional therapy (used in adults but it's still experimental in children)


Acute intervention in ischemic stroke	
TIME IS BRAIN	
	8



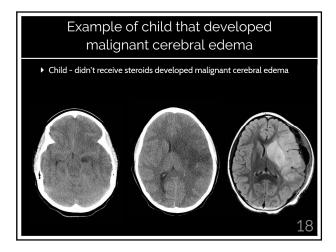






Guidelines for c	childhood stroke
Minimal evidenceModerate consensus	
RCP H Stroke Resolution Stroke Recy recommendations for childhood strok	The Diagnosis and Acute Management of Childhood Stroke
Antithrombotic Therapy in Neonates and Children* American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (BR Editor) Pall Marsky, JMSS, Education Charles, JMS, Market Charles, JMS, Marsket Charle	AHA Scientific Statement Management of Stroke in Infants and Children A Scientific Statement From a Special Writing Croup of the control on Cardiovascular Disease in the Young
15	See 'Links' tab for access

Example: 5-year-old with stroke	
 5-year-old boy MRI - big acute stroke in the left middle cerebral artery territory, MRA - drop of flow in the left internal carotid artery MRI with gadolinium demonstrated the sick arteries ICA and MCA which may be vasculitis disorder of these large arteries in the brain 	
	16


Prof. Adam Kirton - University of Calgary, Canada

Steroids in acute Focal Cerebral Arteriopathy (FCA)

- ▶ Focal Cerebral Arteriopathy
 - > General term
 - > Exact mechanism unknown
 - > 'Primary angiitis of the CNS'
 - > 'Transient cerebral arteriopathy'
 - > Postvaricella vasculopathy
- ► In an acute case presenting with inflammation, should we treat with anti-inflammatory drugs, specifically steroids?

17

Steroids in acute Focal Cerebral Arteriopathy (FCA) Risk vs. Benefit Risk of serious steroid toxicity = low Active infection unlikely High risk of progression with increased morbidity and mortality Higher BP may help perfusion Steroids don't worsen outcomes in adult stroke Weak evidence safe, beneficial

Prof. Adam Kirton - University of Calgary, Canada

Malignant cerebral ed	dema
 ▶ 1-10% supra-tentorial strokes ▶ Swelling max at 36-72 hrs (1/3 < 24 hrs) ▶ ↑ brain: skull ratio in children ▶ Herniation syndromes ▶ 80% mortality in adults ▶ Treatment? 	3 hours
Early decompressive surgery in malignant infarction of the middle cerebral artery: a pooled analysis of three randomised controlled trials Lawy retired Javant Refuge 1, John Levi Law Inserfacey, 10. Alga, Calpan Anala, The Calmada, Mary States and Lawy Calpan Anala, The Calmada, Mary States and Lawy Calpan Anala, The Calmada, Mary Calpan, Anala, The Calmada, Mary Calpan, Anala, The Calpan, Calpan, Anala, The Calpan, Calpan, Anala, The Calpan, Calpan	,

Epid	dem	iolc	av	of	AIS

▶ AIS has been fairly well-defined:

Cerebrovascular Disorders in Children

John Kylan Lynch, DO, MPH

Current Neurology and Neuroscience Reports 2004, 4:129-1

- ▶ 5 per 100,000 children per year
 - > E.g. ~ 1 case per month in the city of Calgary

20

Clinical presentation of AIS

- ▶ Any *sudden* neurological deficit
- Maximal at onset
- ▶ TIA has occurred in ~33%
- ▶ Confounders more common in kids
- ▶ Complicated differential diagnosis

Mimics of Childhood Stroke: Characteristics of a Prospective Cohort

Renée A. Shellhaas, MD, Sabrina E. Smith, MD, PhD, Erin O'Tool, BS, Daniel J. Licht, MD, Rebecca N. Ichord, MD

PEDIATRICS Volume 118, Number 2, August 200

21

The screen versions of these slides have full details of copyright and acknowledgements

Prof. Adam Kirton - University of Calgary, Canada

Pediatric AIS: etiology and risk factors Smoking, diabetes, hypertension, atherosclerosis, atrial fibrillation are NOT risk factors for pediatric AIS Vasculitic/inflammatory (20–30%) Cardiac (25%) Prothrombotic (10–20%) Traumatic (10–20%) Hematological (10–20%) Congenital/structural (10–20%) Other: migranous, metabolics, drugs Idiopathic in >20% Majority will have multiple risk factors

Prevalence of Risk Factors by Ag	e at Time of AIS				
Risk Factor Category	<5 Years	5-9 Years	10-14 Years	15-18 Years	p ³
Arteriopathy	106/229 (46%)	82/125 (66%)	57/106 (54%)	32/65 (49%)	0.006
Cardiac disorders	115/317 (36%)	39/141 (28%)	26/129 (20%)	24/80 (30%)	0.007
Chronic systemic conditions	49/321 (15%)	34/144 (24%)	26/129 (20%)	17/80 (21%)	0.15
Prothrombotic states	36/321 (11%)	16/144 (11%)	23/129 (18%)	12/80 (15%)	0.23
Acute systemic conditions	94/308 (31%)	25/142 (18%)	22/129 (17%)	7/79 (9%)	< 0.000
Chronic head and neck disorders	10/318 (3%)	17/142 (12%)	28/128 (22%)	12/79 (15%)	< 0.000
Acute head and neck disorders	81/306 (26%)	33/139 (24%)	19/124 (15%)	15/79 (19%)	0.07
Infection	72/321 (22%)	23/144 (16%)	24/130 (18%)	8/81 (10%)	0.05
At least 1 RF present	191/214 (89%)	110/118 (93%)	81/98 (83%)	59/63 (94%)	0.05
"Chi-square y value to test whether the proportion of children with each risk factor is independent of age group. RFs for a phenocetasis in adulthood were not included because they were recorded in few patients. Other RFs were not included because this category combines a range of risk factors. Also = arreital identies robele, RF = not factor.					

 Infection/inflammation? > Transient cerebral arteriopathy (TCA) > Focal cerebral arteriopathy (FCA) 	Childhood	l cerebral arteriopathies	
 Childhood primary angiitis of the CNS (cPACNS) Post-varicella angiopathy (PVAR) Dissection Moyamoya Sickle cell Congenital/genetic 		Transient cerebral arteriopathy (TCA) Focal cerebral arteriopathy (FCA) Childhood primary angiitis of the CNS (cPACNS) Post-varicella angiopathy (PVAR) Dissection Moyamoya Sickle cell	24

Prof. Adam Kirton - University of Calgary, Canada

The VIPS study

Infection, vaccination, and childhood arterial ischemic stroke

Results of the VIPS study

Heather J. Fullerton, MD, MAS; Nancy K. Hills, PhD: Mitchell S.V. Elkind, MD, MS; Michael M. Dowling, MD, PhD: Max Wintermark, MD: Carol A. Glaser, DVM, MD: Marilyn Tan, MD: Michael J. Rivkin, MD: Luigi Titomanlio, MD, PhD; A. James Barlovich, MD; Gabrielle A. deVeber, MD, MSc On behalf of the VIPS Investigators.

Neurology® 2015;85:1459-1466

- ▶ VIPS: Vascular Effects of Infection in Pediatric Stroke
- ▶ n=355
- ▶ Recent infection = 6.3-fold AIS risk
- ▶ Similar across stroke subtypes
- ▶ Vaccination = LOWER risk (OR 7.3)

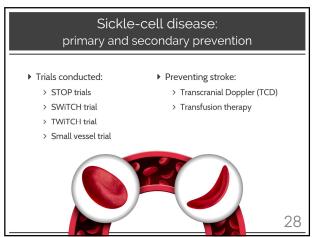
25

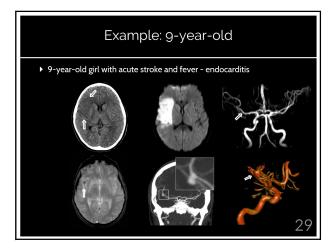
Example: 15-year-old

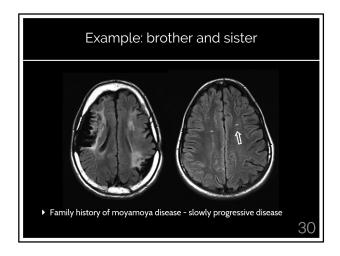
- ▶ 15-year-old boy collapsed
- Decreased level of conciseness, multiple brainstem abnormalities
- MRA occlusion of the distal basilar artery with signs of dissection
- ► MRI small strokes throughout the posterior circulation
- ▶ Treatment: heparin, fully recovered

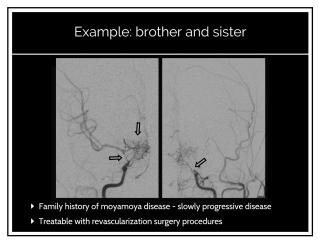
Arterial Tortuosity: An Imaging Biomarker of Childhood Stroke

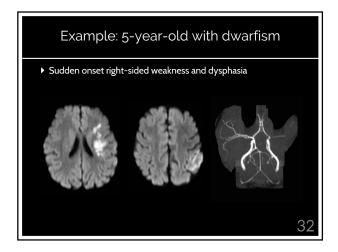
Felix Wei, Karl T. Diedrich, Heather J. Fullerton, Gabrielle deVeber, Max Wintermark, Jacquie Hodge, Adam Kirton
and the Vascular Effects of Infection in Pediatric Stroke (VIPS) Investigators, MM Dowling, St. Benedict, T.J Bernard, CK Fox,
NR Friedman, WD. Lo. RN Ichord, MA. Inn, MT Mackay, Chavez MI Hernander, P-Humphreys, L. C. Jordan, SM Sultan ... See all authors
Originally published 22 Mar 2016 | https://doi.org/10.1161/STROKEAHA.115.011331 | Stroke. 2016.47.1265-11270

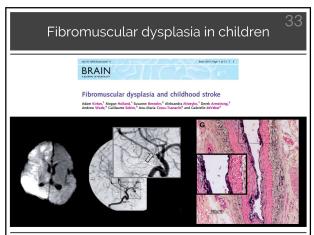

- ▶ Kids with dissection and kids with FCA have higher arterial tortuosity
- ► The way arteries are built, and their structural integrity may be associated with the risk for stroke
- ▶ Tortuosity an imaging biomarker


27

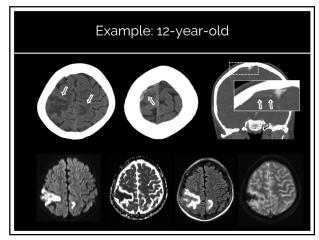

The screen versions of these slides have full details of copyright and acknowledgements







Мо	yamoya disease	
 Progressive ICA occl SCD, NF1, T21, R/T TIA's with crying or F Stroke: Ischemic or Is 	HV	
► Treatments > Medical > Surgical	Normal	Puff of smoke


ADA2 can cause recurrent small strok in children	es
The NEW ENGLAND JOURNAL of MEDICINE ORIGINAL ARTICLE Early-Onset Stroke and Vasculopathy	
Associated with Mutations in ADA2 O, Zhou, D, Yang, AK, Ombrello, Andrey V, Zavialov, C. Toro, Anton V, Zavialov,	
D.L. Stone, J.J. Chae, S.D. Rosenzweig, K. Bishop, K.S. Barron, H.S. Kuehn, P. Hoffmann, A. Negro, W.L. Tsai, E.W. Cowen, W. Pel, J.D. Miller, C., Shivin, T. Heller, D.T. Chin, N.J. Patronas, J.S. Barber, CC.R. Lee, C.M. Wood, A. Ling, S.J. Kelly, D. E. Kliener, J.C. Millish, N.J. Garson, H.H. Kong, S. Hambleton, F. Candott, M.M. Quezado, K.R. Calvo, H. Alao, B.R. Barham, A. Jones, J.F. Meschia, B.B. Wornell, S.E. Kanner, S. Shir, R. Goldbach-Mannelly, M. Abinan, E. Chellom, A. Godte, M. Hand, R. Goldbach-Mannelly, M. Abinan, E. Chellom, A. Godte, M. H. Sannelly, Y. Facushia, T. R. Evergeron, M. S. Hand, M. Garden, R. Sood, M.S. Hershfield, M. Boehm, D. L. Kastner, and L. Alsentijevich	
	34

Example: 12-year-old
 12-year-old boy with inflammatory bowel disease, on steroids, bloody diarrhea, and iron-deficient
▶ Left side weakness, and new headaches
CT scan - hypodense infarct in the right and left hemisphere
35

Prof. Adam Kirton - University of Calgary, Canada

Cerebral sinovenous thrombosis (CSVT) in children

CEREBRAL SINOVENOUS THROMBOSIS IN CHILDREN

GABRIELLE DEVEBER, M.D., MAUREEN ANDREW, M.D., COLEEN ADAMS, M.B., BRUCE BJORNSON, M.D., FRANCES BOOTH, M.D., DAVID J. BUCKLEY, M.B., CH.B., CAROL S. CAMPIELD, M.D., MICHELE DAVID, M.D., PETER HUMPHREYS, M.D., PERRE LANGEVIN, M.D., E. ATHEN MACONALD, M.D., AND JANE GILLETT, M.D., FOR THE CANADIAN PEDIATRIC ISCHEMIC STROKE STUDY GROUP*

N Engl J Med, Vol. 345, No. 6 • August 9, 2001

Different presentations

Slower progression

Headache

Increased ICP

Seizures

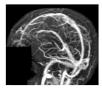
Different risk factors

Infection

Dehydration

Chronic disease

Blood clotting disorders

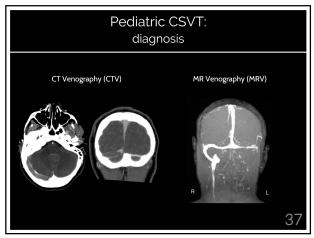

36

Cerebral sinovenous thrombosis (CSVT) in children

CEREBRAL SINOVENOUS THROMBOSIS IN CHILDREN

GABRIELLE DEVEBER, M.D., MAUREEN ANDREW, M.D., COLEEN ADAMS, M.B., BRUCE BJORNSON, M.D., FRANCES BOOTH, M.D., DAVID J. BUCKLEY, M.B., CH.B., CAROL. S. CAMPIELD, M.D., MICHELE DAVID, M.D., PETER HUMPHREYS, M.D., PERE LANGEVIN, M.D., E. ATHEN MACOPANALD, M.D., AND JANE GILLETT, M.D., FOR THE CANADIAN PEDIATRIC ISCHEMIC STROKE STUDY GROUP*

N Engl J Med, Vol. 345, No. 6 • August 9, 20



The screen versions of these slides have full details of copyright and acknowledgements

Prof. Adam Kirton - University of Calgary, Canada

Thrombophilias are associated with childhood CSVT

Impact of Thrombophilia on Risk of Arterial Ischemic Stroke or Cerebral Sinovenous Thrombosis in Neonates and Children

A Systematic Review and Meta-Analysis of Observational Studies

Gili Kenet, MD*; Lisa K. Lüükhoff*; Manuela Albisetti, MD; Timothy Bernard, MD;
Mariana Bonduck, MD; Leonardo Brandao, MD; Stephane Chabrier, MD; Anthony Chan, MD;
Gabrielle deVbert, MD, MAS; Barbara Fielder, MD; Heather J. Fulletton, MD, Marks,
Neil A. Goldenberg, MD, PlD; Eric Grabowski, MD; Gudum Günther, MD; Christine Heller, MD;
Sasame Holzbauer, MD; Alfonso Iorio, MD; Jama Journeyeak, MD; Ralf Junker, MD;
Sasame Holzbauer, MD; Alfonso Iorio, MD; Jama Journeyeak, MD; Ralf Junker, MD;
Marilyn Manco-Johnson, MD; Rolf Mesters, MD; Paul Monagle, MD; C. Heleen van Ommen, MD;
Leslie Raffini, MD; Kevils Rossiay, MD; Paul Simion, MD; Ronald D. Sträter, MD;
Guy Young, MD; Ulrike Nowak-Göttl, MD

Circulation, 2010;121:1838-184

► Family history and thrombophilic testing may be necessary in children with CSVT

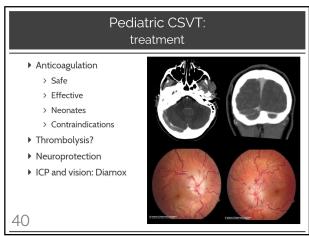
38

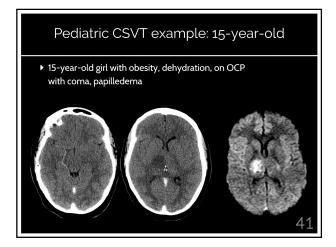
Anticoagulants in pediatric CSVT

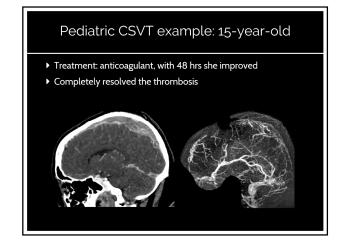
Anticoagulants in Pediatric Cerebral Sinovenous Thrombosis

A Safety and Outcome Study

Mahendranath D. Moharir, MBBS,¹ Manohar Shroff, MD,²
Derek Stephens, MSc,² Ann-Marie Pontigon, MBA,³
Anthony Chan, MBBS,⁴ Daune MacGragor, MD,¹ David Mikulit, MD,⁵
Margaret Adams, BScN³ and Gabrielle deVeber, MD^{1,3}
ANN NEUROL 2010;67:590–599


- ▶ 162 children with CSVT
- ▶ 85 anticoagulated
- ▶ 28-37% untreated propagated thrombus
- ▶ 4-7% treated propagated
- ▶ Propagation = infarcts, poor outcome
- ▶ Bleed rate 2-6%, same outcomes


39


The screen versions of these slides have full details of copyright and acknowledgement	Т	he screen versions	of these slides	have full details	of copyright and	dacknowledgement	S
--	---	--------------------	-----------------	-------------------	------------------	------------------	---

Prof. Adam Kirton - University of Calgary, Canada

Example: 13-year-old	
 13-year-old girl, collapsed, with a new headache and dense hemiparesis CT scan, decompressed Underlying arteriovenous malformation 	42

Hemorrhagic stroke: epidemiology

Cerebrovascular Disorders in Children

John Kylan Lynch, DO, MPH

- ▶ HS also occurs in children
- ▶ Possibly lower incidence than ischemic stroke
- ▶ Typical clinical presentation

43

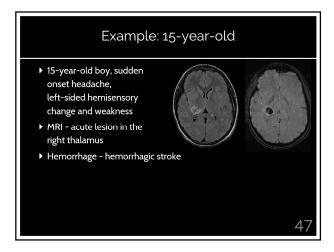
Hemorrhagic stroke: clinical presentation

- ▶ Location-dependent
 - > IP >> SAH, IVH, EDH, SDH
 - > Supra > infratentorial
 - > Cortical > 80%
- Signs & symptoms
 - > Headache: thunderclap
 - > Vomiting, altered LOC, seizures
 - > Focal deficits

44

Lynch, CNNR 2004; Meyer-Heim, Brain Dev 2003

The screen versions of these slides have full details of copyright and acknowledgements



Prof. Adam Kirton - University of Calgary, Canada

Hemorrhagic stroke: etiology Vascular malformations > AVM (30-80%) > Cavernous malformations Aneurysms Arteriopathies CSVT Blood disorders (10-30%) > Leukemia, platelets, SCD, iatrogenic Malignancy (2-20%) Trauma Idiopathic Lynch, CNNR 2004; Meyer-Heim, Brain Dev 2003

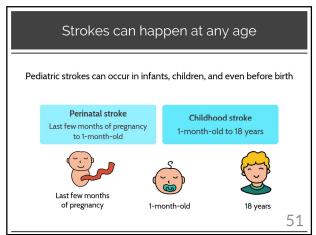
Hemorrhagic stroke: investigation CT Head Lumbar puncture CBC, PTT, INR +/- other MRI Blood sensitive sequences MRA, MRV Conventional angiography Lynch, CNNR 2004; Meyer-Heim, Brain Dev 2003

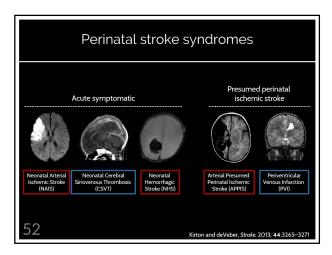
Example: 15-y	ear-old
 15-year-old boy, sudden onset headache, left-sided hemisensory change and weakness MRI - acute lesion in the right thalamus Hemorrhage - hemorrhagic stroke 	

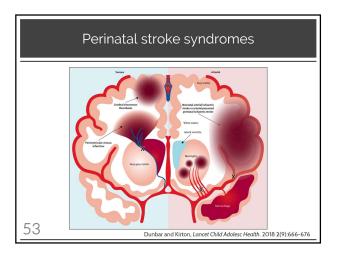
Example: 14-year-old
➤ 14-year-old girl, left-sided weakness, headache, decreased level of consciousness, with large hemorrhage in the right frontal lobe
48

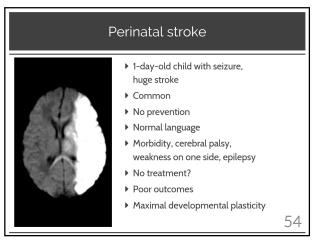
Example: 14-year-old
 14-year-old girl, left-sided weakness, headache, decreased level of consciousness, with large hemorrhage in the right frontal lobe CTA - unique aneurysm malformation of the right cerebral artery

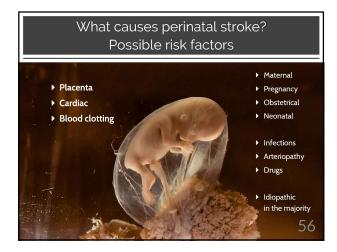
Prof. Adam Kirton – University of Calgary, Canada

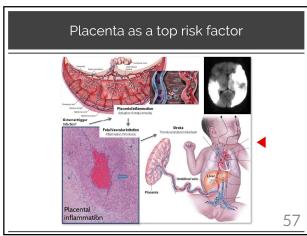

Cerebral Cavernous Malformations (CCM) Capillary malformations Focal deficits, seizures, ICH Tx: resection AD KRIT-1 CCM2 PCDC10

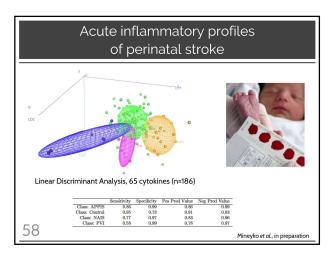

Hereditary hemorrhagic t (HHT)	telangiectasia
 ▶ AD > TGF-beta superfamily > Endoglin (HHT1) > ACVRL1 (HHT2) ▶ Systemic telangiectasia > Pulmonary (50%) > Liver (30%) > Brain (10%) 	

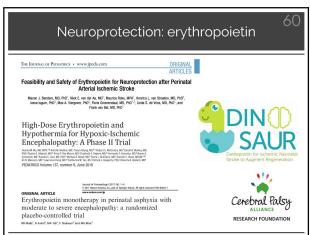

► AD > TGF-beta superfamily > Endoglin (HHT1) > ACVRL1 (HHT2)	
> Endoglin (HHT1) > ACVRL1 (HHT2)	
> ACVRL1 (HHT2)	
▶ Systemic telangiectasia	
> Pulmonary (50%)	111
> Liver (30%)	2 3 3 4 3
> Brain (10%)	

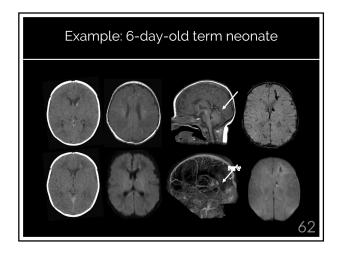


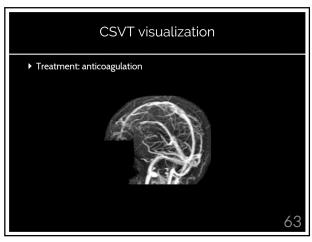




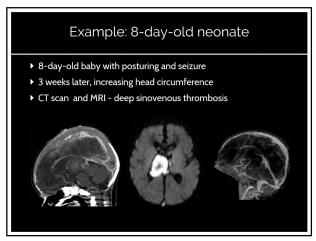

Alberta Perinatal Si	troke Project (APSP)
> > 1:1500 live births You will not incur a more focused than the week you are born	d period of risk for ischemic stroke
APSP ALBERTA FREIMATAL STROKE PROJECT	
	55




Neuroprotection		
 Seizures - control, monitor Temperature - euthermia Infection - find and Tx Glucose - euglycemia Airway and breathing? Circulation - CPP = MAP - ICP? Sedation - minimize CMRO2? ICP? 	Penambea Penambea Core	
Hutchison et al., Seminars in pediatric Neurology . 2004;11:139–146	59	

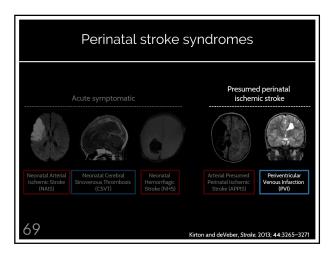


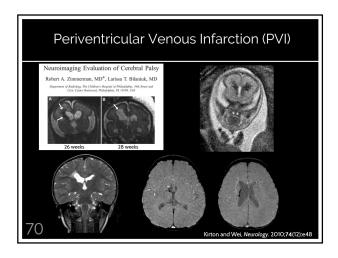
 ▶ 6-day-old baby with seizures ▶ CT scan - little hemorrhage

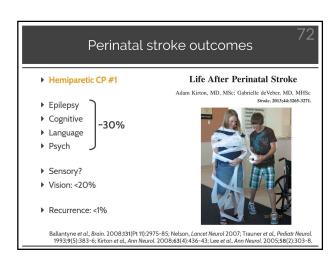


Anticoagulants in pediatric CSVT	
Anticoagulants in Pediatric Cerebral Sinovenous Thrombosis	
A Safety and Outcome Study	
Mahendranath D. Mcharir, MBBS. ¹ Manohar Shroff, MD. ² Derek Stephens, MSc. ² Arm-Marie Fortigen, MBA, ³ Anthony Chan, MBRS, ⁴ Danie MacFongor, MD, ¹ David Milalis, MD. ⁵ Margaret Adams, BScN ³ and Gabrielle deVeber, MD. ¹² MARIE AND MEJORO, 2010;67:590–599	
▶ 162 children with CSVT	
▶ 85 anticoagulated	
 28-37% untreated propagated thrombus 	
▶ 4-7% treated propagated	
Propagation = infarcts, poor outcome	
▶ Bleed rate 2-6%, same outcomes	64

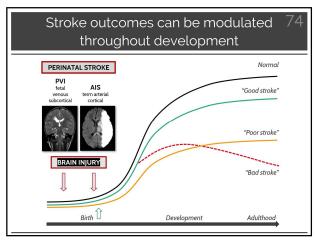
Example: 8-day-old neonate	
 8-day-old baby with posturing and seizure 3 weeks later, increasing head circumference CT scan and MRI - deep sinovenous thrombosis 	
	65

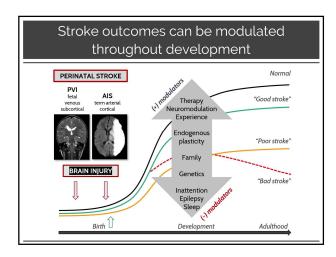

Example: brain hemorrhage in a neonate
▶ Term baby with seizure
► Large hemorrhage in the right frontal lobe
66

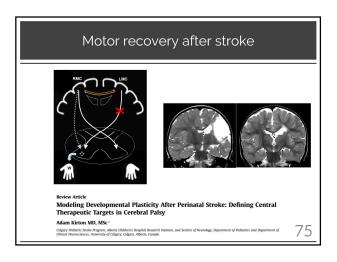

Neonatal hemorrhagic stroke research					
Popul Hemo	Mrks I Original Investigation attion-Based Epid rrhagic Stroke (cit Globard Devey, RO. Nobis Lettoral NO. NO. Nobis Lettoral NO. NO. Nobis Lettoral	neau, PhD; Bonnie J. Kaplan, PhD; Kathles			
NHS	AIS + HT NHS + PPHS	CSVT + HT ncidence: ~1:88	HIE+HT 80 live births	PPHS	67

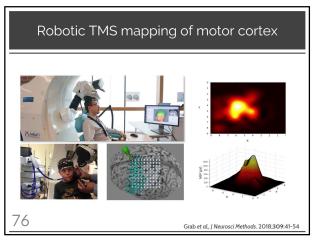


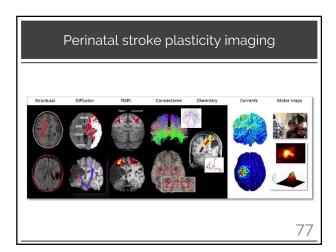
Prof. Adam Kirton - University of Calgary, Canada

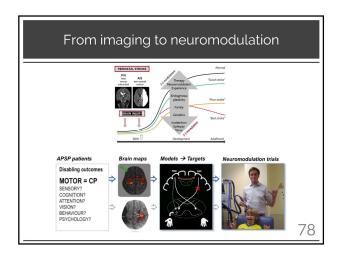

Recognize the presentations, causes, and management of stroke in neonates and children Appreciate the role of developmental neuroplasticity in determining the diverse range outcomes that occur

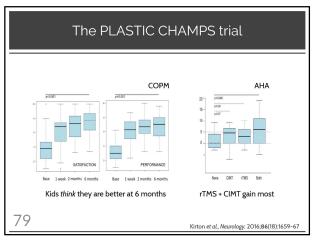


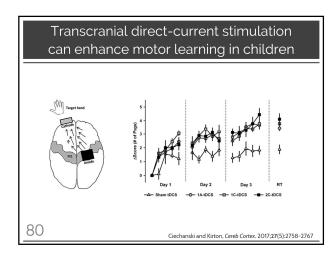

Outc	omes in childhood AIS	
Most suffer lifeloFactors: age, loca	ng disability tion, size, plasticity, others	
MotorCognitiveBehavioralEpilepsyMental health	Hemiparesis #1, dystonia Neuropsychological testing ADHD 15–20%, SIPS study QOL, family	
		73

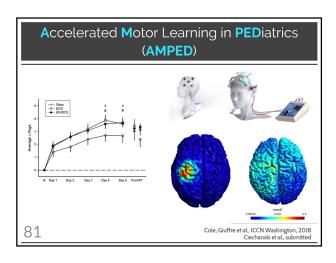


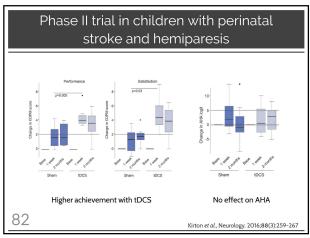




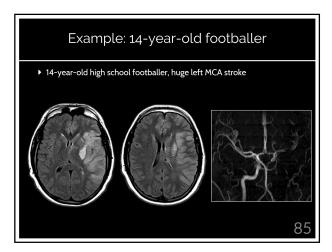


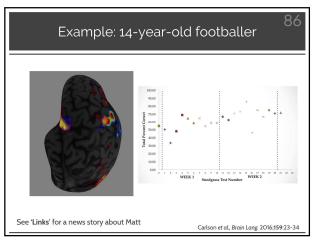


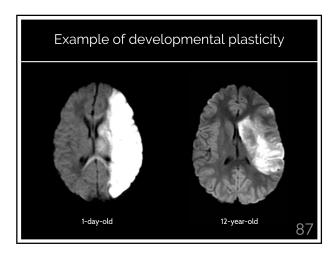


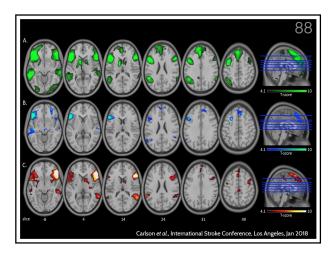


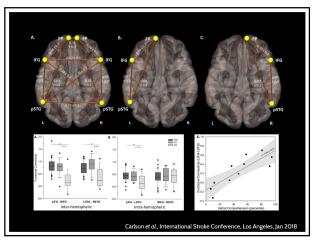


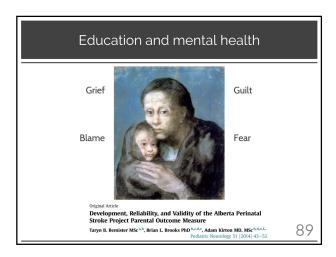


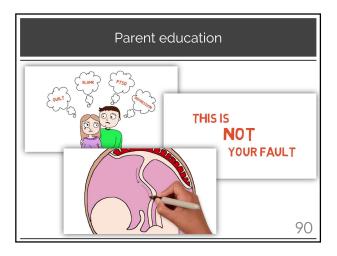


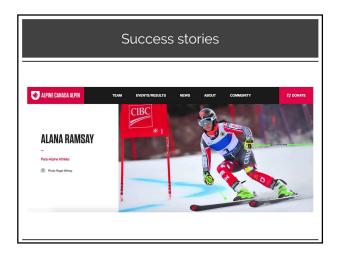












HCT II	
HSTalks	
By leading world experts	