Capacitative (Store-Operated) Calcium Entry
Dr. James W. Putney, Jr.

Cellular Ca\(^{2+}\) Signalling
- Contraction
- Secretion
- Metabolic effects
- Growth
- Differentiation
- Death etc.

Two Phases of Calcium Signalling
In a Single Lacrimal Acinar Cell

The screen versions of these slides have full details of copyright and acknowledgements
Capacitative (Store-Operated) Calcium Entry

Dr. James W. Putney, Jr.

Ca2+ Signaling Is Comprised of Ca2+ from Two Sources

Could IP\textsubscript{3} Be the Signal for Ca2+ Entry?
Capacitative (Store-Operated) Calcium Entry
Dr. James W. Putney, Jr.

1. The Regulation of the Cellular Ca\(^{2+}\) Pool

2. Regulation of Ca\(^{2+}\) Release by Carbachol and Atropine

3. Refilling of Ca\(^{2+}\) Pool

Putney, J.W., Muscarinic, α1adrenergic and peptide receptors regulate the same calcium influx sites in the parotid gland, J. Physiol., (Lond.) 268: 139-149, 1977

The screen versions of these slides have full details of copyright and acknowledgements.
Capacitative (Store-Operated) Calcium Entry
Dr. James W. Putney, Jr.

Capacitative Calcium Entry

Ca$^{2+}$

PLC

Gp

Agonist

Putney, J.W., A model for receptor-regulated calcium entry, Cell Calcium 7:1-12, 1986

SERCA Inhibitors

Cyclopiazonic acid

2,5-di-[tert-butyl]-14-benzohydroquinone (DBHQ)

Thapsigargin

The Effect of Thapsigargin:

a SERCA Inhibitor

The screen versions of these slides have full details of copyright and acknowledgements
Capacitative (Store-Operated) Calcium Entry
Dr. James W. Putney, Jr.

Summary: Ca\(^{2+}\) Exchange

The Effect of TG on Ca\(^{2+}\) Stores and Exchange

I\(_{\text{CRAC}}\)
Calcium Release-Activated Calcium current

The screen versions of these slides have full details of copyright and acknowledgements
Capacitative (Store-Operated) Calcium Entry
Dr. James W. Putney, Jr.

Varying Ionic Selectivity of CCE Channels

<table>
<thead>
<tr>
<th>Highly selective</th>
<th>Moderately selective</th>
<th>Not selective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hematopoietic cells</td>
<td>Endothelial cells</td>
<td>Smooth muscle</td>
</tr>
<tr>
<td>I_{calc}</td>
<td>A431 cells</td>
<td>Pancreatic acinar cells (mouse)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Beta cells</td>
</tr>
</tbody>
</table>

Capacitative Calcium Entry (CCE)

- Also called store-operated calcium entry
- Ubiquitous in non-excitable cells, occurs in many excitable cells
- Maintenance of ER/SR calcium homeostasis: a requirement for life
- Involved in calcium signaling, either directly (thymocytes) or in a supporting role (pancreas)
- CCE specifically implicated in inflammation, Alzheimer’s disease, immune deficiencies, oncogenesis, actions of PCBs, heavy metals

The Pharmacology of CCE

Channel blockers: ZAPB, SKF900665, Divalent cations

"Mechanism" inhibitors: Wortmannin, Vas. trafficking inhibitors, Ionophores

SERCA inhibitors: Thapsigargin, Tributyltin, PAHs
Capacitative Calcium Entry:
Key Questions

1. The signal
2. The channel molecule

The Signal for Capacitative Ca\(^{2+}\) Entry Channel

"CIF" Exocytosis

Conformational coupling

STIM

DT40 B-Lymphocytes

Control IP\(_3\)-R-KO

The screen versions of these slides have full details of copyright and acknowledgements
Capacitative (Store-Operated) Calcium Entry
Dr. James W. Putney, Jr.

Partial Purification of CIF

- Human platelets
- Controls: Thapsigargin-activated
- Acid extraction, barium precipitation (removes inositol phosphates)
- Activity detected by injection into oocytes
- Biogel P-2 chromatography
- Activity detected by injection into oocytes
- Anion exchange HPLC
- Heat stable, 600 daltons, phosphate (?)

Csutora, et al., Calcium influx factor is synthesized by yeast and mammalian cells depleted of organellar calcium stores, Proc. Nat. Acad. Sci. USA, 96: 121126, 1999

I\textsubscript{CRAC} Activation in Cell-Lines

I\textsubscript{CRAC} in RBL Cells Activated by IP\textsubscript{3}
Capacitative (Store-Operated) Calcium Entry
Dr. James W. Putney, Jr.

Conclusion

Thapsigargin-stimulated platelets produce a soluble activity that activates the calcium-selective, store-operated current, I_{CRAC}, without discharging intracellular calcium stores.

The Results of RNA Interference Knockdown of STIM1 in HEK293 Cells

Liou et al., Current Biology 15: 1235-1241, 2005

The screen versions of these slides have full details of copyright and acknowledgements.
Capacitative (Store-Operated) Calcium Entry
Dr. James W. Putney, Jr.

STIM1 and SOC Activation

EYFP-STIM1

The screen versions of these slides have full details of copyright and acknowledgements
HEK293 Cells Co-Transfected with YFP-STIM1 and M5-Receptor All Cells Initially in Media Lacking Ca\(^{2+}\) With or Without 5 µM Gd\(^{3+}\)

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>11</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 µM CCh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 µM Atrp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+1.8 mM Ca(^{2+})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TIRF Imaging: EYFP-STIM1

Control TG, t = 5min

The screen versions of these slides have full details of copyright and acknowledgements
Capacitative (Store-Operated) Calcium Entry
Dr. James W. Putney, Jr.

The Effect of STIM1 Mutant on Ca\(^{2+}\) Signaling

Thapsigargin-activated calcium entry

Constitutive calcium entry

Superimposition of constitutive entry
Capacitative (Store-Operated) Calcium Entry
Dr. James W. Putney, Jr.

The TRP (Transient Receptor Potential) Superfamily

Common Structural Features of Mammalian TRPCs and Drosophila TRP

The Structure of a Functional Channel
Capacitative (Store-Operated) Calcium Entry

Dr. James W. Putney, Jr.

The Regulation of TRPC Channels by Store Depletion

TRPC3 is capacitative

Birnboumer, CHO

Schultz, HEK293

Muallem, HEK293

Putney, HEK293

Putney, DT40

Gill, DT40

HEK293 Cells

DT40 B Lymphocytes

The screen versions of these slides have full details of copyright and acknowledgements
Capacitative (Store-Operated) Calcium Entry
Dr. James W. Putney, Jr.

DT40 B Cells

WT-DT40 Cells, 100µg TRPC3 cDNA-CMV

TRPC3 in DT40 B-Cells

<table>
<thead>
<tr>
<th>Low expression</th>
<th>High expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitative</td>
<td>Non-capacitative</td>
</tr>
<tr>
<td>(probably through DAG)</td>
<td></td>
</tr>
<tr>
<td>Gd<sup>3+</sup> sensitive (1 µM)</td>
<td>Not Gd<sup>3+</sup> sensitive (1-10 µM)</td>
</tr>
</tbody>
</table>
Capacitative (Store-Operated) Calcium Entry
Dr. James W. Putney, Jr.

Signalizing Pathways for HTRPC3-Mediated Calcium Entry

- **ATP** → **IP3** → **Ca2+**
- **Ca2+** activates **PKC**
- **PKC** activates **TRPC3**

Assembly of Functional Store-Operated Channels

- **Ca2+** triggers channel assembly

Incomplete and Non-Functional Store-Operated Channels

- **Ca2+** fails to trigger channel assembly

The screen versions of these slides have full details of copyright and acknowledgements
Addendum

After completion and submission of this talk, a series of papers appeared establishing newly discovered proteins, designated as Orai1, 2 and 3, as likely subunits of the CRAC channels. Key references are given below:

Acknowledgements

NIEHS
Gary Bird
Becky Bayles
Jeff Redus
Jennifer Oliver
Guillermo Vazquez
Mohamed Trebak
Len Lecatsker
Zewern Smyth
Zoean Mercer
Wayne Delowen
Barbara Jones
Jean Philippe Lievremont
Barbara Wedel

Oxford
Anant Parekh

Boston University
Victoria Balintzas

Cambridge
Colin Taylor

Kyoto University
Yasuo Mori

The screen versions of these slides have full details of copyright and acknowledgements.