Soreness and Ulcers 5: Biology, Diagnosis & Management of Cancer Regimen-Related Oral Mucosal Injury

Prof. Stephen T. Sonis - Brigham and Women’s Hospital and the Dana-Farber Cancer Institute, USA

1. Mammalian target of rapamycin kinase inhibitors
 - Work well in renal cell Ca and others, due to effect on HIF-1 alpha gene expression & reduction of angiogenesis
 - This is a very complex pathway, with lots of potential for error

2. mTOR inhibitor-induced stomatitis
 - Associated with high incidence of dose limiting & treatment limiting stomatitis
 - Different lesions, aphthae like
 - Grayish necrosis, surrounded by epithelium
 - Frequently occur on soft palate ➔ eating very painful
 - ≥ 40% must stop treatment/ dose de-escalate
 - Kinetics/trajectory more acute, 5-7 days post treatment

The screen versions of these slides have full details of copyright and acknowledgements.
mTOR inhibitor-induced stomatitis
Associated with high incidence of dose limiting & treatment limiting stomatitis

Combination therapies
Will continue to grow and potentially impact supportive care druggable targets & increase opportunities

Mucositis interventions

- Despite its frequency and symptomatic, physiologic & economic cost, there is no currently approved SOC that works to prevents OM or reduces its severity
 - Of mechanism-based agents approved for other indications, amifostine and palifermin have been used in this population, but each has issues
 - Frustration due to inability to prevent mucositis development
- The good news: There’s a number of promising medications in the development pipeline (pre-clinical – phase 2/3)
 - Superoxide dismutase mimetic, innate immune modifiers, botanically-derived anti-inflammatory, defensin mimeretic & more
 - Optimistic about an effective treatment

The screen versions of these slides have full details of copyright and acknowledgements
Mucositis interventions

- Photobiomodulation (low level laser therapy) has been reported to have efficacy
 - A lot of literature; interesting trials in 2 populations:
 1. SC transplant
 2. MNC
 - More work needed regarding biology & mechanism
 - Reported biology is very robust
 - Can stimulate healing, but might negatively impact tumor response to treatment and/or behaviors
 - More work needed to assure that there is no mitigation of tumor response to treatment

Pipeline of mechanistically-based OM interventions

- Clonidine Lauriad
- Doxepin HCI
- SGX942 (innate defense regulator)
- Defensin mimetic
- Superoxide dismutase mimetic
- Direct gene transfer
- Anti-TNF antibody
- Alteration of bacterial genomics TFF
- Naturally-derived products
- LLLT

The pipeline of OM interventions is rich & growing

Prediction of risk

The screen versions of these slides have full details of copyright and acknowledgements
Risk of toxicity
Not all patients are on an even playing field when it comes to toxicity risk

- There are patients who go through treatment with no/minimal toxicity
- There are patients who develop issues very early on

The precision medicine initiative
Understanding risk of toxicities & disease, patient response and outcomes, to individualize treatment

We’re heading towards personalized medicine

- Who is at risk of disease/toxicity?
- What works best?
We’re heading towards personalized medicine

Some clinical axioms:
- Not all patients are at equal risk of developing a disease
- Many factors associated with risk are genetically driven
- Patients do not respond to drugs in an equivalent way:
 - Some have a brisk response, some moderate & some not at all, and may require different medication
 - Clinical trial efficacy endpoints designed for bell-shaped curve
 - e.g. 100 patients, only 10 respond
 - Drug likely won’t be approved
 - Characterizing those patients may benefit that population

We’re heading towards personalized medicine

Some clinical axioms:
- Not all patients are at equal risk of developing a disease
- Many factors associated with risk are genetically driven
- Patients do not respond to drugs in an equivalent way:
 - Some have a brisk response, some moderate & some not at all, and may require different medication
 - Clinical trial efficacy endpoints designed for bell-shaped curve
 - Response/non-response is often genetically determined
 - Not all patients are at equal risk of toxicity to a drug
 - e.g. some patients respond well to antibiotics, while others suffer GI problems

Not all patients are at equal risk

Patient

- Variables are the greatest determinant of risk
- Many are genomics associated

Toxicity

- Biologically robust
- Interacts & produces byproducts

Tumor

Treatment

- Amount of drug, amount of radiation, etc.
Soreness and ulcers 5: biology, diagnosis and management of cancer regimen-related oral mucosal injury

Prof. Stephen T. Sonis—Brigham and Women’s Hospital and the Dana-Farber Cancer Institute, USA

Genetic determinants of toxicity work at three levels

- Drug metabolism
- Direct cell response to drug
- Bystander biologic targets of drug

Drug metabolism mutations

Studies focus on presence/absence and activity of chemotherapy metabolizing enzymes

Drug metabolism mutations

- 5-FU – commonly used for colorectal cancer, HNC & some breast cancers
- Dihydropyrimidine dehydrogenase (DPD) catabolizes 5-FU
- DPD deficiency in patients receiving 5-FU leads to increased frequency of toxicity
 → Can identify the mutation & determine associated toxicity
- Genetic defect leads to DPD deficiency completely in 0.1% of the population, and partially in 3%-5%
- The observed frequency of toxicities in patients getting IV 5-FU >> than the frequency of the defect

The screen versions of these slides have full details of copyright and acknowledgements
Soreness and ulcers 5: biology, diagnosis and management of cancer regimen-related oral mucosal injury 2

Prof. Stephen T. Sonis – Brigham and Women’s Hospital and the Dana-Farber Cancer Institute, USA

Drug metabolism mutations

If genes impact risk in a clinically significant way, they have to do it in a way that is associated with toxicity’s broader pathobiology

What are our goals for translational genomics?

- Identify biological targets for treatment & mechanisms of action
- Identify patients at risk for diseases or treatment-related toxicities
- Differentiate responders & non-responders to specific interventions

Ideal:
- Test patient for mucositis risk
- Examine potential treatments & therapies
- Test patient to personalize treatment

Application of genomics to risk prediction & responder/non-responder analysis

The screen versions of these slides have full details of copyright and acknowledgements
Soreness and ulcers 5: biology, diagnosis and management of cancer regimen-related oral mucosal injury 2

Prof. Stephen T. Sonis – Brigham and Women’s Hospital and the Dana-Farber Cancer Institute, USA

The basics of genomics
Chromosomes, genes & Single nucleotide polymorphisms (SNPs)

The basics of genomics
Chromosomes, genes & Single nucleotide polymorphisms (SNPs)

The basics of genomics
Chromosomes, genes & Single nucleotide polymorphisms (SNPs)

The screen versions of these slides have full details of copyright and acknowledgements
Soreness and ulcers 5: biology, diagnosis and management of cancer regimen-related oral mucosal injury 2

Prof. Stephen T. Sonis– Brigham and Women’s Hospital and the Dana-Farber Cancer Institute, USA

Genes & SNPs

- Important mutations; enable linking to phenotypes
- Can be used to define patient risk & response

How can we identify genes or SNPs associated with a specific phenotype?

The screen versions of these slides have full details of copyright and acknowledgements
Soreness and ulcers 5: biology, diagnosis and management of cancer regimen-related oral mucosal injury 2

Prof. Stephen T. Sonis – Brigham and Women’s Hospital and the Dana-Farber Cancer Institute, USA

Candidate gene
Generating hypothesis-driven targets

“If I asked experts what I should do, they would have told me to invent a faster horse.”
Henry Ford

“You don’t know what you don’t know”

Candidate gene
Classical model of genetic association

One key

One lock (phenotype)

Candidate gene

The universe of candidates...

The screen versions of these slides have full details of copyright and acknowledgements
Soreness and ulcers 5: biology, diagnosis and management of cancer regimen-related oral mucosal injury 2

Prof. Stephen T. Sonis – Brigham and Women’s Hospital and the Dana-Farber Cancer Institute, USA

The screen versions of these slides have full details of copyright and acknowledgements
Results of candidate gene studies have been disappointing

Barnett et al. Lancet Oncology 2012:
- 1613 patients with breast or prostate cancer
- Candidate genes (or associated SNPs) evaluated for predictive validity for late RT-induced toxicities
- NONE of the previously reported genes/SNPs validated
- Each of the studies evaluated looked for single genes, ignoring any synergism

Gene & SNP functionality is cooperative

Gene & SNP functionality is cooperative

Radiation pneumonitis
Moving away from one key, one lock

Moving away from one key, one lock

Genome wide association studies

The screen versions of these slides have full details of copyright and acknowledgements
Soreness and ulcers 5: biology, diagnosis and management of cancer regimen-related oral mucosal injury 2

Prof. Stephen T. Sonis – Brigham and Women’s Hospital and the Dana-Farber Cancer Institute, USA

The screen versions of these slides have full details of copyright and acknowledgements
Soreness and ulcers 5: biology, diagnosis and management of cancer regimen-related oral mucosal injury 2

Prof. Stephen T. Sonis – Brigham and Women’s Hospital and the Dana-Farber Cancer Institute, USA

The screen versions of these slides have full details of copyright and acknowledgements.
Soreness and ulcers 5: biology, diagnosis and management of cancer regimen-related oral mucosal injury 2

Prof. Stephen T. Sonis – Brigham and Women’s Hospital and the Dana-Farber Cancer Institute, USA

The screen versions of these slides have full details of copyright and acknowledgements.
Prof. Stephen T. Sonis – Brigham and Women’s Hospital and the Dana-Farber Cancer Institute, USA

The screen versions of these slides have full details of copyright and acknowledgements
Genome wide association studies

Re-assess significance

false positives.

So how can cooperative genes or SNPs be detected?

Develop networks to identify cooperative genes/SNPs

Networks define interactions probabilistically →
So we know what’s important & what’s not

Communication Networks

• Nodes are phones
• Edges are phone lines

The screen versions of these slides have full details of copyright and acknowledgements
Soreness and ulcers 5: biology, diagnosis and management of cancer regimen-related oral mucosal injury 2

Prof. Stephen T. Sonis – Brigham and Women’s Hospital and the Dana-Farber Cancer Institute, USA

A couple of real applications:

- Defining the mechanism(s) by which chemoradiation-induced toxicities occur & targets for therapeutic intervention
- Identifying patients at risk of mucositis, induced by chemotherapy conditioning regimens for SC transplant

Risk prediction: A clinical example

- Palifermin is effective in preventing oral mucositis (OM) in patients conditioned for stem cell transplant
- OM is a significant & debilitating side effect in 40% of patients undergoing SC transplant
- Palifermin is available, but it is expensive (10k$) & must be given pre-conditioning & prophylactically
- Treat 10 patients undergoing transplant → 2 will develop OM, BUT 6 will be treated unnecessarily
- Accurate risk prediction would provide opportunities for directed prophylaxis & reduced side effect burden
- Given the biological basis for OM, genotypically-based risk assessment makes sense

SNP-based bayesian networks define oral mucositis risk, in patients receiving hematotoxic conditioning regimens for autologous hematopoietic stem cell transplantation

The screen versions of these slides have full details of copyright and acknowledgements
Soreness and ulcers 5: biology, diagnosis and management of cancer regimen-related oral mucosal injury 2

Prof. Stephen T. Sonis – Brigham and Women’s Hospital and the Dana-Farber Cancer Institute, USA

The screen versions of these slides have full details of copyright and acknowledgements
Soreness and ulcers 5: biology, diagnosis and management of cancer regimen-related oral mucosal injury 2

Prof. Stephen T. Sonis – Brigham and Women’s Hospital and the Dana-Farber Cancer Institute, USA

The screen versions of these slides have full details of copyright and acknowledgements
Soreness and ulcers 5: biology, diagnosis and management of cancer regimen-related oral mucosal injury 2

Prof. Stephen T. Sonis – Brigham and Women’s Hospital and the Dana-Farber Cancer Institute, USA

Optimal network

Optimal network

Optimal network

The screen versions of these slides have full details of copyright and acknowledgements
Soreness and ulcers 5: biology, diagnosis and management of cancer regimen-related oral mucosal injury 2

Prof. Stephen T. Sonis – Brigham and Women’s Hospital and the Dana-Farber Cancer Institute, USA

The screen versions of these slides have full details of copyright and acknowledgements
Soreness and ulcers 5: biology, diagnosis and management of cancer regimen-related oral mucosal injury 2

Prof. Stephen T. Sonis – Brigham and Women’s Hospital and the Dana-Farber Cancer Institute, USA

Optimal network

Analytical method

Results

82 SNP Networks identified mucositis risk with accuracy of 99.3%

The screen versions of these slides have full details of copyright and acknowledgements
Soreness and ulcers 5: biology, diagnosis and management of cancer regimen-related oral mucosal injury 2

Prof. Stephen T. Sonis – Brigham and Women’s Hospital and the Dana-Farber Cancer Institute, USA

Results
Receiver operating characteristic (ROC) curve

For Mucositis, Area Under ROC Curve = 0.997
For Films Mammography*, Area Under ROC Curve = 0.76

*ROC curve for film mammography for the 42,713 women with fully verified limited cancer status

Exploratory independent validation using post hoc methodology

- A small independent patient cohort was randomly selected for exploratory prospective validation
- Demographics similar to pts. enrolled in discovery set
- 1:1 ratio OM negative to OM positive
- Included similar conditioning regimens & same time interval as pts. in the discovery set
- Accuracy > 80% & no false positives

What do we want in a treatment?

The screen versions of these slides have full details of copyright and acknowledgements