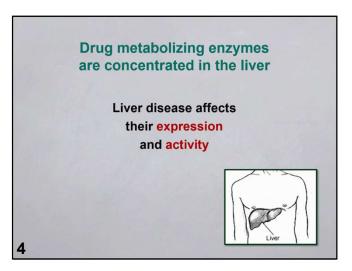
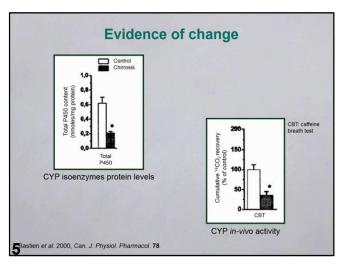
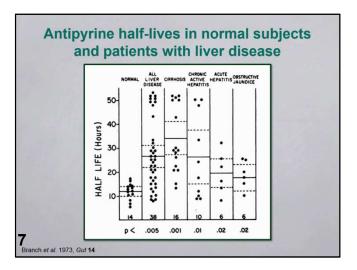


Dr. Nathalie Zgheib, Associate Professor at the Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine (AUBFM)


Drug Metabolism in Liver Disease Nathalie K. Zgheib, M.D. Associate Professor, Pharmacology & Toxicology American University of Beirut Email: nk16@aub.edu.lb
Acknowledgements Robert A. Branch, MD University of Pittsburgh
2 NIH Grant # 5 R01 DK059519 and NIH/NCRR/GCRC Grant #5 M01 RR00056 Outline • Drug metabolism in liver disease
Evidence of change Clinical relevance Pathophysiology of liver disease Physiology of hepatic elimination Effect of liver disease on drug metabolism Intact hepatocyte theory Progressive sequential model in liver disease Effect over time and disease prognosis Specific disease entities Gene expression Epigenetic mechanisms DNA methylation

miRNA expression



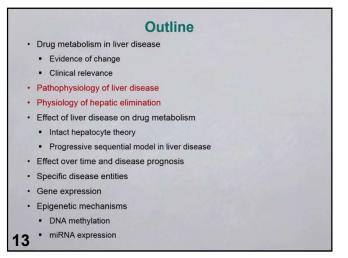

		

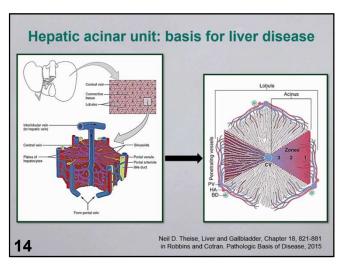
Clini	ical relevance	
 Can the extent of cha in an individual patier 		
Can a quantitative live	er function be developed?	

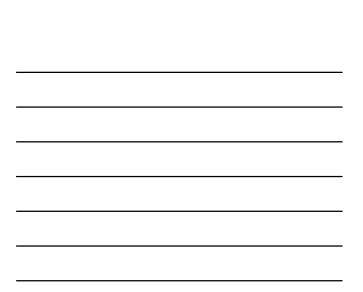
	_

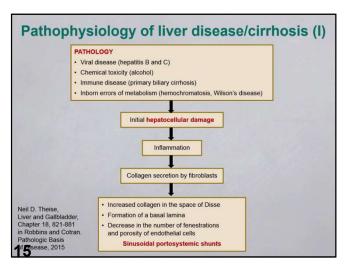
Clinical relevance
Can the extent of change be anticipated in an individual patient?
Can a quantitative liver function be developed?

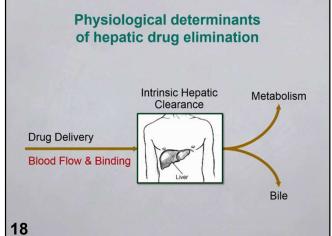
Score	+1	+2	+3
Bilirubin	< 2 mg/dl	2-3 mg/dl	> 3 mg/dl
Serum Albumin	> 3.5 g/dl	2.8-3.5 g/dl	< 2.8 g/dl
INR	< 1.7	1.71 to 2.2	> 2.2
Ascites	None	Controlled medically	Poorly controlled
Encephalopathy	None	Controlled medically	Poorly controlled

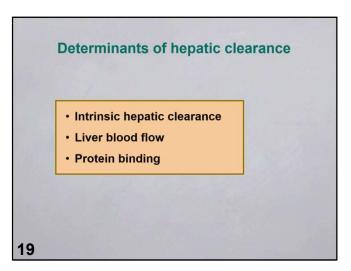


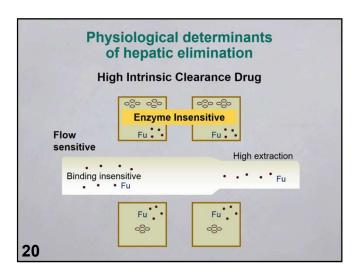

 The Child-Pugh score: limitations
 Lack of discrimination in fully compensated liver diseases BUT good at high values Categorical variables: lack of a continuous variable that spans a range of function Large number of factors that contribute to each variable
10
 Drug metabolism as a marker of liver disease
Prognostic Value of the Aminopyrine Breath Test in Cirrhotic Patients
 JEAN-PIERRE VILLENEUVE, CLAIRE INFANTE-RIVARD, MICHEL AMPELAS, GILLES POMIER-LAYRARGUES, PMICHEL HUET AND DENIS MARLEAU Liver Unit, Department of Medicine, Highiel Saint-Luc and Department of Preventice and Social Medicine, Université de Montréel, Montréel, Quebec, Conada HIX 334
 An aminopyrine breath test was obtained at the time of inclusion in the study and results were expressed as per cent of the dose excreted in 2 hr
At very high Child-Pugh score, in decompensated liver disease ABT is a good marker, but this is not the case at lower values of CPS
 A 2 year follow up showed that the ABT test is as good as the CPS in liver disease prognosis
11 Villeneuve et al. 1986, Hepatology 6(5), p928 ABT. Aminopyrine Breath Test
Questions
 Is there a differential effect of liver disease
 on different routes of metabolism (selectivity)?
 Does the severity of the underlying disease influence the magnitude of change (sensitivity)?
 Do diseases of differing etiology alter the metabolism of different drugs being given to a variable extent (selectivity)?
Can we use drug metabolizing enzymes genomic and epigenomic markers for liver disease (biomarkers)?
Clinical relevance: Can the extent of change be anticipated in an individual patient?
 Can a quantitative liver function be developed? 12

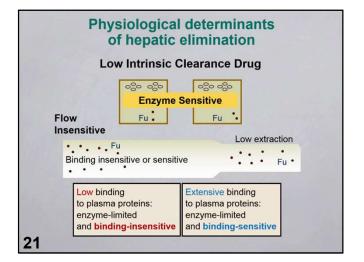


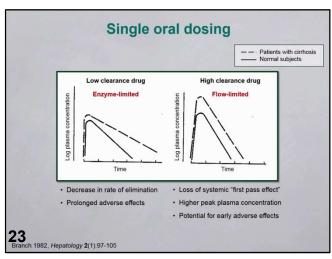


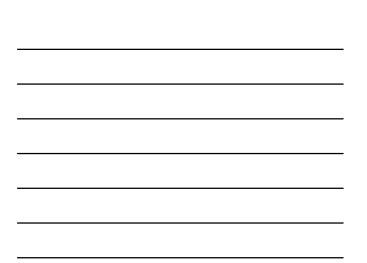


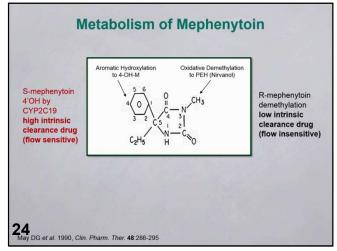



Pethophysiology of liver discoss/sirrhosis (II)
 Pathophysiology of liver disease/cirrhosis (II) Viral disease (hepatitis B and C) Chapter 18, 821-881 in Robbins and Cotran. Pathologic Basis
 Initial hepatocellular damage Repair or replacement of damaged or dead cells
 Inflammation
Collagen secretion by fibroblasts Formation of connective scar tissue and deformation of normal architecture Liver nodules
 Distortion of liver architecture
Increased collagen in the space of Disse Formation of a basal lamina Oecrease in the number of fenestrations and porosity Shunting of portal venous blood through collateral
of endothelial cells 16 Intrasinusoidal portosystemic shunts Channels directly into the systemic circulation Extrahepatic and intrahepatic portosystemic shunts
Liver disease
Hepatocellular damage
Reduction in blood flow due to portosystemic shunts
 Extrahepatic
 IntrahepaticIntrasinusoidal
- IIII asiii usoidai
17
Physiological determinants
of hepatic drug elimination

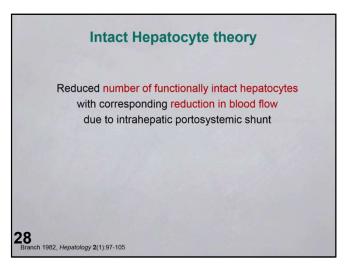


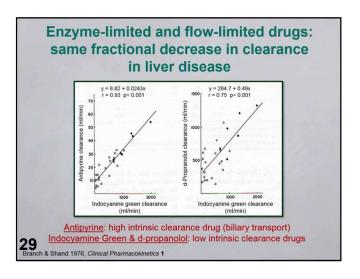


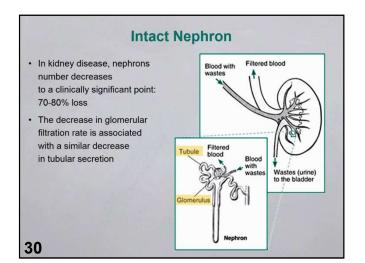

Dr. Nathalie Zgheib, Associate Professor at the Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine (AUBFM)


The pathophysic The physiology Can guess the on the eliminat
22

If we know: The pathophysiology of liver disease The physiology of elimination of a drug Can guess the effect of liver disease on the elimination of that drug




Loss of first pass presystemic elimination of S-Mephenytoin in cirrhosis Normal Subjects R-Mephenytoin O S-Mephenytoin
Patients with cirrhosis Time (hours) Patients with cirrhosis Patients with cirrhosis Time (hours) Patients with cirrhosis
Outline • Drug metabolism in liver disease • Evidence of change
Clinical relevance Pathophysiology of liver disease Physiology of hepatic elimination Effect of liver disease on drug metabolism Intact hepatocyte theory Progressive sequential model in liver disease Effect over time and disease prognosis Specific disease entities
Gene expression Epigenetic mechanisms DNA methylation miRNA expression
Proposed theories that explain impairment of drug metabolism in liver disease
Sick cell theory Intact hepatocyte theory Impaired drug uptake theory Oxygen limitation theory
27



•

Intact Nephron hypothesis
 In renal disease:
Reduction in number of nephrons
 Each surviving nephron maintains normal function
Implication: GFR (glomerular filtration rate) can be used as a measure of all aspects of renal function
31
 Intact Hepatocyte hypothesis
In liver disease:
Reduction in number of hepatocytes
 Each surviving hepatocyte maintains normal function
Functional intrahepatic shunts
Implication: quantitative measures can be used as measure of all aspects of hepatic function
32
 V
Implications of intact nephron
 and intact hepatocyte hypothesis
 If you know:
 Relative proportion of renal and hepatic clearance of a drug in normal subjects
Renal and hepatic function in an individual patient
 Then:
Rational individualized dose of that drug can be predicted
 in that individual patient
20
33

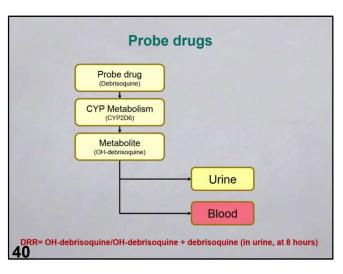
Dr. Nathalie Zgheib, Associate Professor at the Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine (AUBFM)

Prediction of modification of drug clearance by renal and hepatic disease for individual patients
To the patic elimination of the patic eliminat
3 Pedoyin et al. 1998, Clin Pharmacol & Ther. 64(1):8-17
Differential effect of liver disease
on alternative routes of metabolism
35
Differential effect of liver disease on oxidative metabolism
On Oxidative metabolism
CYP isoenzymes protein levels Cyp isoenzymes protein levels

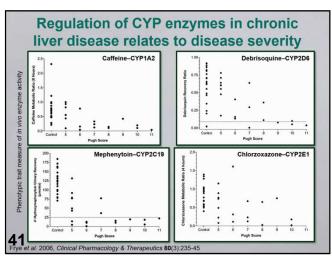
36 Bastien et al. 2000, Can. J. Physiol. Pharmacol. 78

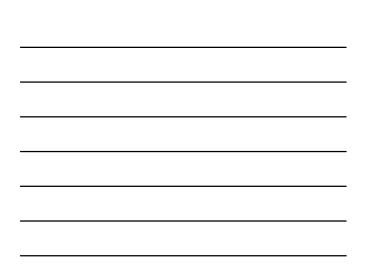
CYP in-vivo activity

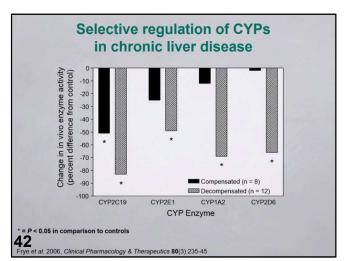
Dr. Nathalie Zgheib, Associate Professor at the Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine (AUBFM)

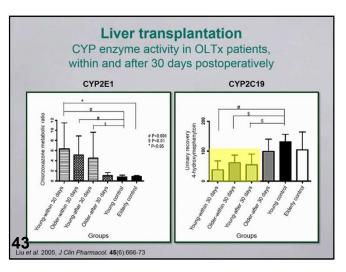

Influence of liver disease on oxidation Vs. conjugation of drugs
Influence of chronic liver disease on the clearance of morphine (conjugation to glucuronide) 1700 1500 1500 1700 1900 100 100 100 100 100 100 100 100
Administration of several probe drugs in the same cohort of patients

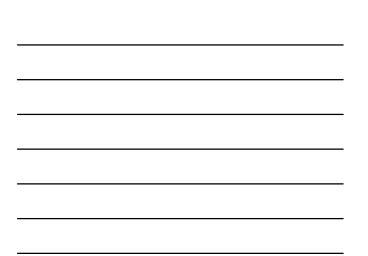

39

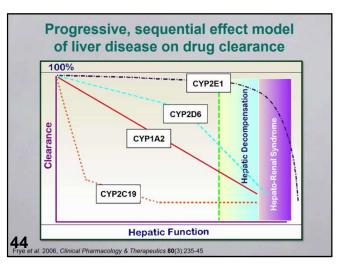












1	sanative of the machanism involved the machanism
	respective of the mechanism involved, the progressive
	equential model of the effect of liver disease on drug etabolism can provide a framework to assess:
•	Hepatic function
•	Disease prognosis
pı	rovided that the sensitivity of the metabolizing enzyme
01	f that drug to liver disease is known

Genotyping *1A, *1C, *1F *1, *2, *3 *1, *2, *3 *1, *3, *4, *6, *7, *8

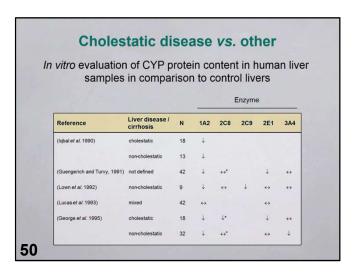
*1, *5B

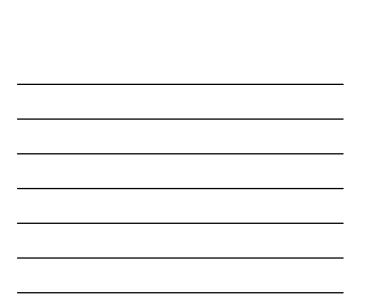
NAT1 13 variants NAT2 13 variants

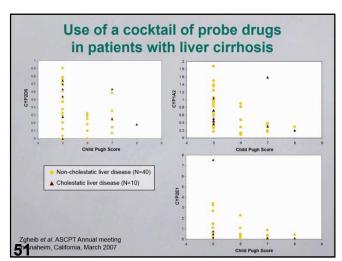
cirrhosis

CYP2D6

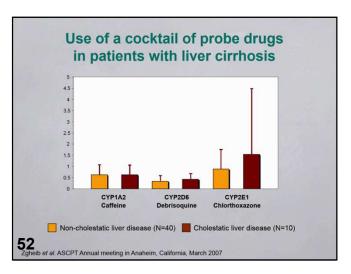
CYP2E1

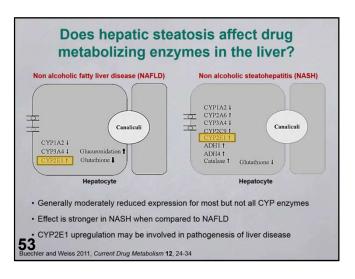

Dr. Nathalie Zgheib, Associate Professor at the Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine (AUBFM)

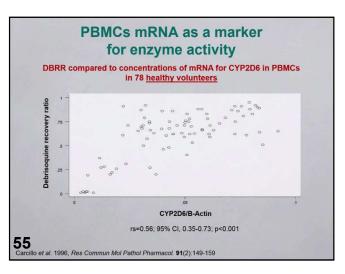

48 Zgheib et al. ASCPT Annual meeting in Anaheim, California, March 2007

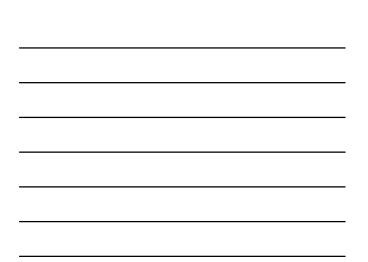


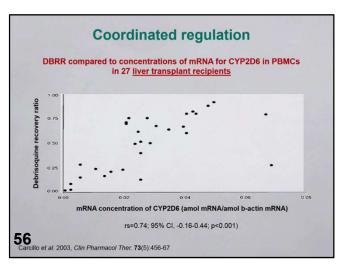
Outline
 Drug metabolism in liver disease
Evidence of change
 Clinical relevance
Pathophysiology of liver disease
Physiology of hepatic elimination
 Effect of liver disease on drug metabolism
Intact hepatocyte theory
 Progressive sequential model in liver disease
Effect over time and disease prognosis
 Specific disease entities
Gene expression
Epigenetic mechanisms
 DNA methylation
49 • miRNA expression

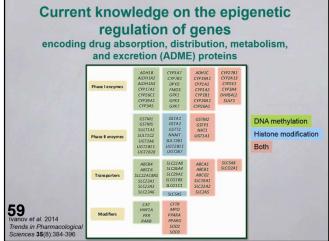


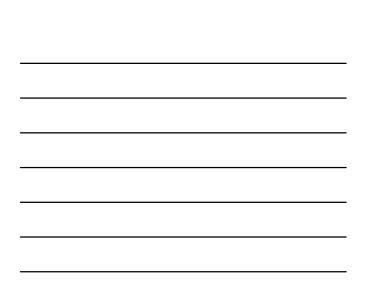


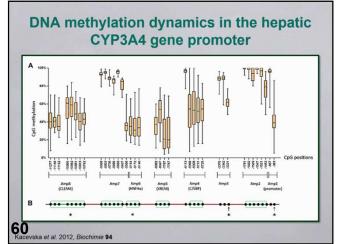



	Outline
	Drug metabolism in liver disease
	Evidence of change
	Clinical relevance
	Pathophysiology of liver disease
	Physiology of hepatic elimination
	Effect of liver disease on drug metabolism
	Intact hepatocyte theory
	Progressive sequential model in liver disease
	Effect over time and disease prognosis
	Specific disease entities
•	Gene expression
	Epigenetic mechanisms
	DNA methylation
54	miRNA expression

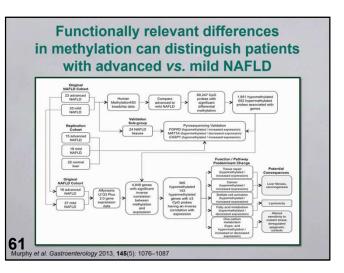


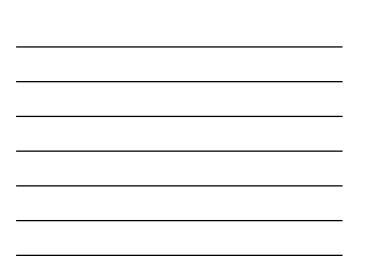


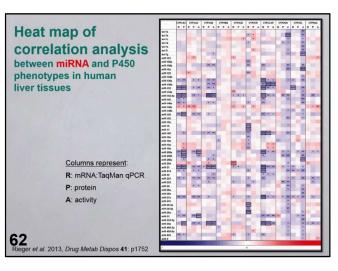

Outline	
Drug metabolism in liver disease	
Evidence of change	
Clinical relevance	
Pathophysiology of liver disease	
Physiology of hepatic elimination	
Effect of liver disease on drug metabolism	
Intact hepatocyte theory	
Progressive sequential model in liver disease	
Effect over time and disease prognosis	
Specific disease entities	
Gene expression	
Epigenetic mechanisms	
DNA methylation	
7 • miRNA expression	

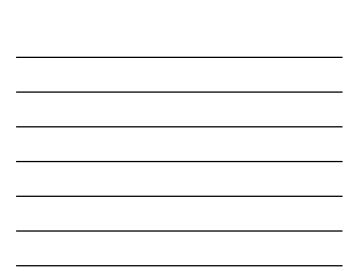


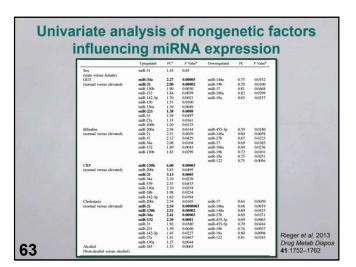
Enimonatio maghaniama
 Epigenetic mechanisms
Epigenetics is the study of inherited changes in gene expression occurring without alterations in the DNA sequence
Epigenetic alterations DNA methylation Gene Drug transporters P450s Nuclear receptors
Oncology - miRNA expression expression profile - Histone modifications - Histone modifications - Drug targets - Drug targets
- Drug targets
58 Gomez and Ingelman-Sundberg 2009, <i>CPT</i> 85 (4): 426-430
Current knowledge on the epigenetic regulation of genes
encoding drug absorption, distribution, metabolism, and excretion (ADME) proteins
 ADHIB CYP3A7 ADHIC CYP27B1 ADHIAZ CYP3B1 CYP3B1 CYP3B1 ADHIAJ DPYD CYPAI CYP2B1

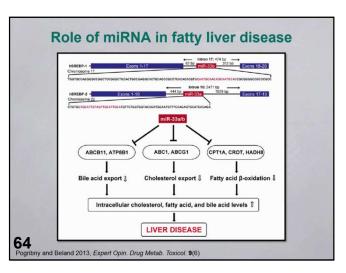












Dr. Nathalie Zgheib, Associate Professor at the Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine (AUBFM)

Peripheral DNA methylation & circulating miRNA

- Arrese et al. 2015, Circulating microRNAs: emerging biomarkers of liver disease. Semin Liver Dis 35(01): 043-054
- Liao et al. 2015, Value of quantitative and qualitative analyses of circulating cell-free DNA as diagnostic tools for hepatocellular carcinoma: a meta-analysis. Medicine (Baltimore) 94(14)

65

Questions

- Is there a differential effect of liver disease on different routes of metabolism (selectivity)?
- Does the severity of the underlying disease influence the magnitude of change (sensitivity)?
- Do diseases of differing etiology alter the metabolism of different drugs being given to a variable extent (selectivity)?
- Can we use drug metabolizing enzymes genomic and epigenomic markers for liver disease (biomarkers)?
- · Clinical relevance:
 - Can the extent of change be anticipated in an individual patient?
 - Can a quantitative liver function be developed?

66

 Summary
Knowledge of the physiology of drug disposition is of value to individualize drug therapy for patients with liver disease
67