Surgical Models and Perioperative Care in Swine

Prof. M. Michael Swindle, DVM
Diplomate ACLAM & ECLAM
Professor Emeritus
Medical University of South Carolina

Estimated average growth rates

Sinclair Yucatan Gottingen

The screen versions of these slides have full details of copyright and acknowledgements
Selection of anesthetic protocols for swine

- Match the anesthesia to the type of surgery
- Consider the goals of the scientific protocol
- Make the selection based upon physiologic effects of the anesthetic
- Minimize the number of agents utilized to minimize the physiologic variables
- Use isoflurane or sevoflurane as a default agent (Discontinue other inhalants)

Injectable anesthetic protocols

- The physiologic effects of injectable agents are changed when multiple agents are used in the same protocol
- The physiologic effects of the protocols may vary widely between species
- If physiologic measurements are made under the protocol, the physiologic effects must be considered in advance
- Injectable protocols should be continuously infused rather than given as repeated bolus injections
Surgical Models and Perioperative Care in Swine
Prof. M. Michael Swindle, DVM
Prof. M. A. McCrackin, DVM, PhD

This methodology does not require more than one person.

Intubation
Anesthesia

- Tiletamine/Zolazepam, especially if combined with other anesthetics, should only be used in physiologically normal pigs and never in pigs in which cardiovascular or other systemic defects are being created.

Telazol/Xylazine or Telazol/Ketamine/Xylazine

- Contraindicated in protocols with cardiovascular, CNS or renal compromise.
- There is not any problem with using the combination for chemical restraint if no physiologic measurements are being made.
- Very useful for large animals because of small volume injections.

Pain assessment

Involves the following observations:
- Condition of incision
- Attitude/Behavior
- Temperature/Pulse/Respiration
- Feces
- Urine
- Appetite
- Water consumption
- Pain score
Preemptive analgesia

- Local Anesthetic Infusion
- Epidural
- Systemic Opioid or NSAID

Fentanyl patches

- Highly variable - breed, age, site, moisture, heat, type of procedure
- Yucatan - 17-22 kg, 100 µg/hr, peak 42-48 hours
- Farm Breeds - 17-25 kg, 25-50 µg/hr
- Require monitoring
- NMDA receptor agonist, windup, postinjury facilitation
- Overdosage may occur
- Approximately 5 µg/kg/hr
- Buprenorphine patches may be better

Aseptic technique

- Antibiotics are not a substitute for aseptic technique and the use of iodine impregnated adhesive drapes as a final prep is highly recommended
- Catheter and device implantation should be scrupulously aseptic. Remove the device if it becomes infected
Surgical Models and Perioperative Care in Swine
Prof. M. Michael Swindle, DVM
Prof. M. A. McCrackin, DVM, PhD

Wound protector (Vi-Drape, MCD)

Humane restraint

Yucatan 22 Kg Female

The screen versions of these slides have full details of copyright and acknowledgements.
Cardiac conduction system

- Neurogenic rather than myogenic
- Large numbers of adrenergic and cholinergic nerve fibers
- Nerve fibers in AV node and bundle branches
- More proximal bifurcation of bundle branches, more connective tissue, less elastic tissue
- Large well differentiated sub-endocardial Purkinje cells
- Blood supply to conduction system similar

Weight vs. age matching

Weight
- Different between breeds at same age
- Index hemodynamics to body surface area

Age
- Differences in hemodynamics at various stages of maturity even within the same breed
- Heart weight: Body weight decreases with maturity
Atherosclerosis

- High cholesterol / High fat diets
- Endothelial / Intimal damage
- Fatty streak lesion
- Macrophage foam cells
- Fibrous plaques (collagen, elastin)
- Complicated lesions - inflammation, necrosis, calcification, neovascularization, hemorrhage

Coronary artery restenosis

- Stent implantation
- 2-6 weeks for lesion
- Occlusion may lead to infarction and aneurysm

VSD closure
Induced models

- Neonatal shunts - PDA, ASD, VSD
- Aortopulmonary shunts
- Coarctation of the aorta
- Aneurysm models
- Pressure & volume overload models
- Myocardial infarct/coronary artery
- Valvular replacement
- Growing heart model

Lateral thoracotomy 4th-5th intercostal space

Median Sternotomy

Manubrium Intact

Manubrium Split
Surgical Models and Perioperative Care in Swine
Prof. M. Michael Swindle, DVM
Prof. M. A. McCrackin, DVM, PhD

Ventricular hypertrophy

Concentric
- ↑ Left ventricular wall thickness
- ↑ Systemic blood pressure
- Pressure overload models induced by surgical banding

Eccentric
- ↑ Left ventricular end diastolic diameter
- ↑ Cardiac output
- Volume overload models induced by arteriovenous fistulas or valvular regurgitation

Pressure overload models

Pressure overload models induced by surgical banding

INFARCT
Clip/Ligature
Atherosclerosis
Ameroid constrictor
Angioplasty balloon
Microspheres
Stent
Pulmonary system

- Lung Lobes (7): Shock organ in pig
 - Left: cranial, middle, caudal
 - Right: cranial, middle, caudal, accessory
 - Mediastinum: thin and friable
 - Alveoli easily ruptured (emphysematous bullae)
- Models:
 - ARDS: Pulmonary Intravascular Macrophages
 - Nitric oxide therapy
 - Asthma
 - Oxidative stress
 - Cystic Fibrosis:
 - CFTR

Ventral View of Abdomen

Abdominal Viscera

Right Kidney
Left Kidney

The screen versions of these slides have full details of copyright and acknowledgements
Renal diseases
- Vesicoureteral reflux
- Intrarenal reflux
- Hypertension
- Hydronephrosis
Suture selection

- Avoid the use of inflammatory suture materials such as surgical gut, silk or absorbable materials containing antimicrobials
- Skin incisions should be closed using a subcuticular pattern with absorbable suture and never staples
- The incision should be sealed with tissue glue
Surgical Models and Perioperative Care in Swine

Prof. M. Michael Swindle, DVM
Prof. M. A. McCrackin, DVM, PhD

The screen versions of these slides have full details of copyright and acknowledgements
Summary of porcine surgical models

- General surgery, organ transplantation, interventional catheters
- Cardiovascular - myocardial infarction, atherosclerosis, arrhythmia ablation, heart failure
- Gastrointestinal/Digestive - oral studies, motility & emptying time different, first pass metabolism
- Renal - hydronephrosis, intrarenal surgery
- Dermal - transdermal absorption, wound healing, reconstructive surgery
- Hepatic - catheterization for drug studies, parenchymal ablation
- Laparoscopic and natural orifice transluminal endoscopic surgery (NOTES)
- Other surgical models - neurosurgery, ophthalmic, orthopedic, fetal, pulmonary, oral and maxillofacial

Postoperative Care of Swine

Prof. M. A. McCrackin, DVM, PhD

Diplomate ACVS & ACLAM, CMAR
Veterinary Medical Officer
Ralph H. Johnson Veterans Affairs Medical Center
Associate Professor
Medical University of South Carolina

The contents of this presentation do not represent the opinions of the Department of Veterans Affairs nor the United States government.
Postoperative care of swine begins preoperatively

Planning & preparation
• Training
• Support equipment
• Analgesic plan
 – Preoperative
 – Intraoperative
 – Postoperative
• Schedule follow-up diagnostics

Preoperative training
• Begin training pre-op
 – 1-8 weeks based on:
 • Complexity of task(s)
 • Age & personality of pig(s)
• Training for:
 – Chronic drug administration
 • Preferred foods, treats, liquids for giving oral medications
 – Examinations
 • Standing on tables or walking up ramps
 • May require months of daily training in long-term studies

Recovery unit
For up to 24 hours post-op, recommend:
• Adjustable lighting
• Small holding pen
• Padded surface/bedding
• Absorbent pads
• Circulating warm water heating blanket
• Heat lamp
• IV fluid hanger
Postoperative support equipment

- Humidified oxygen
- Stethoscope
- Laryngoscope
- Thermometer, lubricant
- Pulse oximeter
- Bandage scissors
- Adhesive tape
- Personal protective equipment (PPE)
- Stocked crash cart
- Monitoring sheets

Postoperative nursing care

- Physiological Support
 - External warming
 - Heat lamp, circulating water blanket
 - Absorbent pads, blankets
 - Good footing
- Monitoring
 - Frequent, repeated measures
 - Temperature, pulse, respiration
 - \(O_2\) saturation, blood pressure

Postoperative housing

- Size appropriate for allowable postoperative activity
 - Good footing to prevent:
 - Falls
 - Damage to incision or skin
 - Gradually increase size for major body cavity & orthopedic surgeries
 - Easy to access & easy to clean
Postoperative pain control

• Pharmaceutical
 – Analgesics
 • Oral
 • Transdermal
 • Injectable
• Non-pharmaceutical
 – Good footing
 – Soft bedding
 – Pen size not too large
 – Bandages as appropriate

Incision monitoring

Immediate post-op

3 days post-op

2 weeks post-op

Postoperative follow-up

Common follow-up:
• Suture removal
• Treatments
 – Analgesics
 – Research meds
• Imaging
 – Radiographs
 – Fluoroscopy
General reference textbooks for swine

Websites

1. Contains swine literature database from Animal Welfare Information Center
2. Contains reviews of models and Sinclair, Hanford and Yucatan information
 http://www.sinclairresearch.com/
3. Tutorial on swine procedures in research: Laboratory Animal Training Association
 http://www.latanet.com/online/onlinetr.htm
4. Göttingen minipig background information
 http://minipigs.dk
5. CD Rom training series on Husbandry, Handling, Injection Techniques, Anesthesia, Analgesia and Perioperative Care
 http://www.latanet.com/desktop/drs.html
 http://www.latanet.com
6. National Swine Research Resource Center
 http://www.nsrrc.missouri.edu/