Skin Innervation
Prof. Martin Schmelz
Karl-Feuerstein-Professorship
Dept. Anesthesiology Mannheim
Heidelberg University
Germany

Overview

• Structure and sensory function in healthy skin
• Skin innervation changes in disease
 – Loss of innervation: polyneuropathy
 – Increased innervation: itch and pain?
• Neuronal function beyond sensory tasks

Neuronal structure
and sensory function in healthy skin
Skin Innervation
Prof. Martin Schmelz

Myelinated fibers

- Touch and texture: corpuscular sensors
- Rapidly and slowly adapting subtypes

<table>
<thead>
<tr>
<th>Slowly adapting</th>
<th>Rapidly adapting</th>
<th>Functional significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superficial</td>
<td>Merkel receptors</td>
<td>Small innervation</td>
</tr>
<tr>
<td>Deep</td>
<td>Ruffini endings</td>
<td>Large innervation</td>
</tr>
</tbody>
</table>

Myelinated fibers – functional significance

Beyond sense of touch, flutter and vibration...
- Detection of texture (Braille)
- Sensor-motor interaction: Grip force, speech
- Position sense (stretched skin above joints)

“Small fibers”:
unmyelinated or thinly myelinated

<table>
<thead>
<tr>
<th>Fiber class</th>
<th>Diameter (µm)</th>
<th>Conduction velocity (ms⁻¹)</th>
<th>Functional significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A alpha</td>
<td>15</td>
<td>50-90</td>
<td>Afferent and efferent muscle innervation</td>
</tr>
<tr>
<td>A beta</td>
<td>8</td>
<td>30-70</td>
<td>Low threshold mechanoreceptors (skin)</td>
</tr>
<tr>
<td>A gamma</td>
<td>5</td>
<td>15-30</td>
<td>Efferent muscle innervation</td>
</tr>
<tr>
<td>A delta</td>
<td><3</td>
<td>5-20</td>
<td>Mechanoreceptors, heat receptors</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>0.5-2</td>
<td>Mechanoreceptors, heat receptors, Pruriceptors</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Warm receptors</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C-touch fibers (social touch)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sympathetic effferent vasoconstrictors, Sedoceptors,</td>
</tr>
</tbody>
</table>

The screen versions of these slides have full details of copyright and acknowledgements
Skin Innervation
Prof. Martin Schmelz

Myelinated vs. unmyelinated fibers: “hear the difference”

A-fiber response
C-fiber response

Microneurography recordings from human cutaneous nerve: single fiber activity

Temperature, itch, pleasure and pain: epidermal free nerve endings

- Sense of temperature: cold and warm fibers
- Nociception: pain and itch
- Pleasant touch: low threshold C-fibers ("C-touch")

Sensors for thermoregulation

Warm fibers
- Unmyelinated
 - Small innervation territory, rare
- Activated by mild warming
- Inhibited by cooling

Cold fibers
- Thinly myelinated
 - Few recordings in humans
- Activated by mild cooling
- Inhibited by warming
 - Paradox activation by strong heat

Contrast enhancement by differential activity pattern
Skin Innervation
Prof. Martin Schmelz

Nociceptors detect threats: behavioral consequences

External threats:
• Localized mechanical stress, friction
• Noxious heat, freezing cold
 \[\text{Withdrawal!}\]

Internal threats:
• Chemical stimuli (acidic pH, inflammatory mediators)
 \[\text{Protect!}\]
• Localized noxious stimuli in the epidermis (mites etc.)
 \[\text{Scratch!}\]

Functional classes of nociceptors

Mechano-heat sensitive nociceptors
• A-delta fibers: sharp, pricking pain
• C-fibers: burning pain
• Immediate, phasic response to external threats
• Implication: withdrawal!

Functional classes of nociceptors (2)

Mechano-insensitive chemo-nociceptors
• A-delta and C-fibers: burning pain
• Delayed, tonic response
• Mainly to slowly developing internal threats
• Implication: protect!
Skin Innervation
Prof. Martin Schmelz

Functional classes of nociceptors (3)

Cold nociceptors
- C-fibers: burning pain
- Delayed, tonic response
- Axons resistant to low temperatures (NaV1.8)
- Implication: **seek warm!**

Functional classes of nociceptors (4)

Pruriceptors
- C-fibers (possibly also A-delta): itch
- Delayed, tonic response to histamine
- Non-histaminergic itch in human yet unclear
- Implication: **scratch!**

Classification of nociceptors

Structural markers
- Peptidergic vs. non-peptidergic
- CGRP, trkA, TRPV1 vs. IB4, GDNF, P2X3
 - Valid for mouse, less so for rat, unclear for human
- New approach: functional markers of mas-related G-protein receptor – family **mrgpr**
 - In mice: mrgprC11, mrgprA3, mrgprD linked to pruriceptors, mrgprB4 linked to C-LTM
Skin Innervation
Prof. Martin Schmelz

16

Functional classes of nociceptors

- Correlate to specific behavioral responses
- Specific molecular sensors and specific axonal proteins yet unclear
- Important future task: structural markers for functional classes (such as B-type natriuretic peptide, mrgpr-family, …)

17

Recent advances in itch mechanisms

Central mediators / markers
- Gastrin releasing peptide (GRP)
- VGLUT2

Peripheral mediators / markers
- B-type natriuretic peptide (NPPB)
- IL-31
- Lysophosphatidic acid (LPA)
- Chloroquine / MrgprA3
- BAM8-22 / MrgprC11

Functional nerve fiber classes
- Cowhage sensitive
- Histamine sensitive

18

C-touch fibers: pleasant touch

Microneurography recordings from human cutaneous nerve: single fiber activity
C-touch fibers: pleasant touch (2)

- Optimal activation by slowly stroking the skin
- Optimal stroking velocity coincides with peak in pleasantness
- No overt perception linked to activation
- Yet central activation of prefrontal cortex and insula
- Pattern compatible with role in “social touch”

Efferent sympathetic innervation of the skin

Mainly thermoregulatory:
- Sudomotors (muscarinergic; ACh)
- Vasoconstrictors (alpha1; norepinephrine)
- Piloarrectors (cholinergic)
- Vasodilators (blushing, unclear transmitter)

No parasympathetic innervation of the skin

Functional tests of small fibers

Quantitative sensory testing (thermoreceptors, nociceptors)
- Warm/Cold detection threshold
- Heat pain threshold

Neurogenic vasodilation (chemonociceptors)
- Chemically/Electrically induced

Sudometry (sympathetic sudomotor fibers)
- Chemically/Electrically induced
Reduced epidermal innervation density: small fiber neuropathy

- Epidermal fiber density (number of nerve fibers penetrating dermo-epidermal junction per mm of epidermal length)
- Skin biopsy and neuronal PGP 9.5 staining

Functional correlates:
- Reduced superficial innervation: Cold/warm thresholds
- Dermal innervation: Heat pain, sudomotor function

Epidermal innervation and sensory function

Decreased innervation = neuropathy! Increased innervation = pain and itch?

- Is there a structure-function relationship for itch and pain in neuropathy?
- Does chronic itch imply increased epidermal innervation?
Skin Innervation
Prof. Martin Schmelz

Structure-function relation between epidermal innervation and chronic pain?

Decreased innervation = neuropathy!
Increased innervation = pain and itch?

Pathologically increased function of skin sensory nerve fibers in chronic pain and chronic itch:
• Primarily functional changes
• Structural changes not required

Neuronal function in the skin - beyond sensory tasks

• “Neurogenic inflammation”
• Nociceptors and inflammatory cells
• Keratinocyte/nociceptors communication
Skin Innervation
Prof. Martin Schmelz

Neurogenic inflammation

"Neurogenic inflammation"

Nociceptor stimulation

Mediation

Protein extravasation

Immunomodulation

CNS: sensation (pain, itch)

Neurogenic inflammation – dermal microdialysis

1 Hz, 80 mA, 0.5 ms
or 4 Hz, 30 mA, 0.5 ms
30 min each

No neurogenic protein extravasation in healthy human skin

Rat

Human

Total protein, mg/mli

Time (min)

4 Hz control

5 Hz control

30

The screen versions of these slides have full details of copyright and acknowledgements
Skin Innervation
Prof. Martin Schmelz

Neuropeptide-induced vasodilation

SP induced protein extravasation and vasodilation

SP but not CGRP induces histamine release

The screen versions of these slides have full details of copyright and acknowledgements
Skin Innervation
Prof. Martin Schmelz

Neurogenic inflammation
1. Activation of nociceptors
2. Release of neuropeptides
3. Vasodilation, (protein extravasation)
 local immunomodulatory effects, trophic effects

- Activated nociceptors release neuropeptides
- Neuropeptides do not directly activate nociceptors

Communication between keratinocytes and nerve endings

Communication between keratinocytes and nerve endings (2)
Skin Innervation
Prof. Martin Schmelz

Complex interaction between neurons and skin cells

- Excitatory interactions
- Inhibitory interactions

Complex interactions include:
- Substance P (SP)
- CGRP
- Endorphins
- Enkephalins
- Eicosanoids
- Tryptase
- Histamine
- PACAP
- IL-1
- IL-8
- IL-4
- TNF
- IL-10
- IL-1ra
- CRH
- PACAP
- NEP

Innervation of air-exposed skin equivalent

Epidermal growth increased by neuropeptides from nerve endings:

- Untreated
- CGRP
- SP
- CGRP + SP
Keratinocytes from atopic dermatitis patients: increased innervation and epidermal thickness

Mechanisms of nociceptor sensitization

Thank you for your interest!

- Structure and sensory function in healthy skin
- Skin innervation changes in disease
 - Loss of innervation: polyneuropathy
 - Increased innervation: itch and pain?
- Neuronal function beyond sensory tasks
Skin Innervation
Prof. Martin Schmelz

The screen versions of these slides have full details of copyright and acknowledgements