The Science of Cosmeceuticals
Prof. Zoe Diana Draelos

Prof. Zoe Diana Draelos, MD
Consulting Professor
Department of Dermatology
Duke University School of Medicine

Creams and the pursuit of youthful skin

What are the most important skin care ingredients?
Active ingredients enhance skin functioning

The skin and active ingredients: moisturization

Moisturization and anti-aging

- The important effect of any skin cream
- Improves skin smoothness, softness, texture, and luminosity
- Provides environment for barrier repair
- Still the basis for all anti-aging skin care creams
Photoprotection and anti-aging

Sunscreens

• New sunscreen FDA guidance allows anti-aging claims when organic and inorganic filters in products.
• Many cosmeceuticals will now include anti-aging claims.
• Anti-aging is based on the prevention of DNA damage.

Melanin DNA protection
Melanin and anti-aging

- Melanin forms a cap over nuclear DNA.
- Melanin stabilizes reactive oxygen species by donating an electron.
- Melanin becomes oxidized resulting in immediate pigment darkening reaction.
- Oxidation consumes melanin and protection mechanisms overwhelmed.

UV-induced DNA damage induces pyrimidine dimers

DNA damage, p53 activation and apoptosis

- Tumor suppressor protein - known as “the guardian of the genome”
- Activates DNA repair proteins
- Halts cell cycle until DNA repair occurs
- If the DNA cannot be repaired, it initiates cell death apoptotic cycle.
DNA damage and aging

- DNA damage
- Cell cycle abnormalities
- Hypoxia

\[\text{mdm2} \rightarrow \text{p33} \rightarrow \text{p53} \]

Cell cycle arrest
DNA repair
Cell cycle restart

Apoptosis
Death and elimination of damaged cells

Cellular and genetic stability

Melanin antioxidant failure: apoptotic cell

Sun protection and anti-aging

- Sunscreen the basis for anti-aging skin care.
- Sunscreens protect the DNA of the cell from damage.
- DNA damage can cause young skin cells to age prematurely.
- Severe DNA damage causes skin cancer.
The Science of Cosmeceuticals
Prof. Zoe Diana Draelos

Sunscreens, DNA damage and the comet assay
Demonstrates protection against UV induced damage

- **Control**
- **Exposed, no protection**
- **Exposed, effectively protected**
- **Exposed, ineffectively protected**

In vitro comparison of the protection from UV-induced DNA damage in cultured human keratinocytes.

Shorter comet tails mean less DNA damage, and longer comet tails mean more DNA damage.

The skin and active ingredients: antioxidants

Antioxidants

- Important in preventing damage to DNA and structural body proteins by highly energetic oxygen molecules
- Antioxidants are necessary for humans to survive in an oxygen rich environment.
- Oxidative damage is the key insult on young skin leading to the appearance of old skin.
Skin vitamin antioxidants

ROS

Vitamin E
Vitamin C

Diet and antioxidant defenses

<table>
<thead>
<tr>
<th>Micronutrient</th>
<th>Antioxidant function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin C</td>
<td>Water-soluble free radical scavenger</td>
</tr>
<tr>
<td>Vitamin E, CoEnzyme Q (not a micronutrient)</td>
<td>Lipid-soluble free radical scavengers</td>
</tr>
<tr>
<td>Riboflavin (B2)</td>
<td>FAD (glutathione reductase)</td>
</tr>
<tr>
<td>Selenium</td>
<td>Glutathione peroxidases, thioredoxin reductase, etc.</td>
</tr>
<tr>
<td>Iron</td>
<td>Catalase</td>
</tr>
<tr>
<td>Manganese</td>
<td>Mitochondrial superoxide dismutase</td>
</tr>
<tr>
<td>Copper, zinc</td>
<td>Cu, Zn superoxide dismutase</td>
</tr>
<tr>
<td>β-carotene, carotenoids (not micronutrients)</td>
<td>Singlet oxygen quenchers</td>
</tr>
</tbody>
</table>

Assessing topical antioxidant efficacy
Antioxidant capacity

- Oral cosmeceuticals do not necessarily function in the same way as topical antioxidants.
- Very difficult to clinically assess the benefits of antioxidants
 - Antioxidants prevent damage that has yet to occur, preventative more than treatment
- ORAC scale proposed, but developed to assess nutritional value of food, not proven relevant to skin or diet.

ORAC scale

- Oxygen radical absorbance capacity (ORAC)
- Measures oxidative degradation of fluorescein after mixed with free radical generator
- Addition of antioxidant allows preservation of fluorescence.

Assessing antioxidants

- Vitamin E is not the best performer on ORAC scale, but it is the primary antioxidant of the body.
- Vitamin C is a better food antioxidant.
- Vitamin C is a secondary antioxidant of the body, there are many tertiary antioxidants (ubiquinone, etc.).
- No model exists and no study done on topical antioxidant effects.
The Science of Cosmeceuticals
Prof. Zoe Diana Draelos

ROS and oxidative stress

What are ROS?
- Reactive Oxygen Species
- Produced during respiration
 (transformation of O$_2$ into water)

How do ROS act inside cells?
1. Minor quantities ➔ Normal metabolism
2. Excessive quantities ➔ oxidative damage to cellular constituents

3 targets:
- DNA: strand breaks and aberrant cross-links ➔ cellular mutations
- Proteins: structural alterations and enzymatic inactivation ➔ loss in cell function
- Lipids: structural and barrier function alterations in cellular membranes ➔ loss of cell viability

Inflam-aging: a cosmeceutical target

A vicious circle with cascade effect:
- Excessive level of ROS can induce inflammation and ROS are inflammatory effectors
- Loss of cellular homeostasis
- Premature aging

2 types of inflam-aging

- Low-grade chronic inflammation
 - Chronic ➔ No resolution; Harmful doesn’t allow healing
 - Low-grade ➔ Asymptomatic; Detectable at cellular level

A response to prolonged repetitive « aggressions »

Since inflammation induce high ROS production, its modulation and resolution is essential for cellular homeostasis

The Science of Cosmeceuticals
Prof. Zoe Diana Draelos

Alphabet vitamins: A, B, C, D, E, F

Vitamin A: carotenoids

Carotenoids: tertiary antioxidant

- Mean concentration of carotene, retinol and dehydroretinol in human back skin was 13, 0.4, and 0.4 micrograms/gm of protein (no age or sex difference noted)
- 90% vitamin A reserve in the liver, 1% in the plasma

Vahlquist A, et al., Vitamin A in human skin: II concentrations of carotene, retinol, dehydroretinol in various components of human skin. JID 1982;75:94-7

The screen versions of these slides have full details of copyright and acknowledgements
The Science of Cosmeceuticals
Prof. Zoe Diana Draelos

Retinol activity

- Retinyl esters
- Hydrolysis → Esterification
- Oxidation → Reduction

Topical retinol
- Retinol most widely used in currently marketed cosmeceuticals
- Highly susceptible to oxidation
- Must be manufactured in an oxygen free environment
- Active products in amber bottles, metal tubes, or one way pump dispensers

Cosmeceutical retinol
- 2% maximum tolerable concentration due to irritation
- Demonstrated to induce benefit beyond moisturization
- Confusing studies showing efficacy equivalent to tretinoin in 12 weeks, but moisturizer effect important
Vitamin B: niacinamide

Niacinamide derivatives

- Niacinamide also known as nicotinamide
- Niacinamide in skin care products speeds cell turnover acting as a vitamin exfoliant.
- May have some anti-inflammatory properties, used in male shaving cosmeceuticals
- Part of NADPH pathway of mitochondrial energy production

Vitamin C: ascorbic acid
The Science of Cosmeceuticals
Prof. Zoe Diana Draelos

Vitamin C: secondary antioxidant

Neutralization of a free radical by an antioxidant

Vitamin C: prevents antioxidant chain reaction

Vitamin C and pigmentation

- Interrupts melanogenesis by interacting with copper ions to reduce dopaquinone
- Blocks dihydrochiniindol-2-carboxyl acid oxidation
- Body reservoir is only 1500mg

The screen versions of these slides have full details of copyright and acknowledgements
The Science of Cosmeceuticals
Prof. Zoe Diana Draelos

Vitamin C and the skin

- Promotes fibroblast proliferation and migration
- Cofactor for lysyl and prolyl hydroxylase
- Modulates replication-associated base excision repair of potentially mutagenic DNA lesions

Vitamin D and skin

- Vitamin D3 major factor canthelicidin expression, inducing cutaneous inflammation in rosacea, producing a cosmetically unattractive red face
- Vitamin D linked to the regulation of p53, a tumor suppressor protein important in skin cancer
- Speculative relationship between vitamin D deficiency and melanoma

Vitamin E: primary antioxidant

Skin vitamin antioxidants

Vitamin E: antioxidants and skin aging

- UV damage rapidly depletes vitamin E
- Very difficult to consume vitamin E, found in nuts primarily
- The optimal amount of vitamin E uptake is unknown, and it is most likely depends on sex and age.
- Antioxidant minimize apoptotic cell formation and need to activate p53 by preventing lethal DNA insult.

The Science of Cosmeceuticals
Prof. Zoe Diana Draelos

Vitamin E and oxidative protection

- Vitamin E epidermal content is only 1.0 nmol/g.
- Alpha tocopherol terminates lipid radical chain reactions, stabilizes membranes against damage by phospholipase A, free fatty acids, and lysophospholipids.

Vitamin E epidermal content is only 1.0 nmol/g.
- Alpha tocopherol terminates lipid radical chain reactions, stabilizes membranes against damage by phospholipase A, free fatty acids, and lysophospholipids.

Oral vs. topical vitamin E

- Vitamin E is fat soluble, hard to penetrate skin topically, may be penetration enhancer intercalating within the lipid bilayer of SC.
- Vitamin E inexpensive antioxidant to prevent lipids in moisturizers from rancidity
- Excellent emollient to smooth skin surface

Oral vs. topical vitamin E

- Vitamin E is fat soluble, hard to penetrate skin topically, may be penetration enhancer intercalating within the lipid bilayer of SC.
- Vitamin E inexpensive antioxidant to prevent lipids in moisturizers from rancidity
- Excellent emollient to smooth skin surface

Vitamin F: essential fatty acids

Vitamin F: essential fatty acids
Essential fatty acids:
linolenic and linoleic acids

- Linolenic acid is omega-3
- Linoleic acid is omega-6
- Number indicates position of the first double bond
 continuing from the terminal methyl group on the molecule

Linolenic omega-3

- Alpha linolenic acid converted to eicosapentaenoic acid
 and then into docosahexaenoic acid
- Used in cell wall formation
- Deficiency leads to decreased mental abilities,
 poor vision, diminished immune function,
 increased triglycerides, increased LDL, hypertension,
 skin disease resembling eczema

Linoleic omega-6

- Gamma linoleic acid, which combines with eicosapentaenoic
 acid to form eicosanoids
- Found in topical preparations as borage oil
 and evening primrose oil
- Orally present with omega-3 in canola oil, hempseed oil,
 walnuts, sesame seeds, avocados, salmon, and albacore tuna
- Important in cell wall formation

Horrobin DF. Essential fatty acids in clinical dermatology.

Simopoulos AP. Omega-3 fatty acids in inflammation and autoimmune disease.

Miller CC, et al. Dietary supplementation with ethyl ester concentrations of fish oil and borage oil.
JID 1991; 96: 98-103
Summary: *cosmeceutical science*

- The moisturizer vehicle accounts for 50-70% of the perceived efficacy.
- Sunscreens are important to prevent DNA damage leading to premature aging.
- Vitamins and other antioxidants are added to quench reactive oxygen species resulting from UV exposure.