How does a cell “know” the difference between an inflammatory stimulus and a phagocytic stimulus?

The far-sighted macrophage

Long distance surveillance

Soluble microbial components

Secretion of cytokines and chemokines to attract and activate other immune cells

The near-sighted macrophage

- Phagocytosis
- Respiratory Burst
- Killing & Digestion
- Antigen Processing

Secretion of cytokines and chemokines to attract and activate other immune cells
The Phagocytic Synapse in Distinguishing Particulate and Soluble Stimuli
David M. Underhill

A far-sighted receptor mechanism

Lipopeptide

TLR2

TLR6

MyD88

Mal

IRAKs

Transcriptional regulation

NF-kB, AP-1, etc.

A near-sighted receptor mechanism

Dectin-1

Yeast

Src

Syk

-P

Phagocytosis

Respiratory Burst

NFAT, SRF

NF-kB

But there’s this inconvenient observation:

- For 30 years or more folks have been using “soluble” β-glucans to block yeast recognition by macrophages…

"Laminarin" a soluble glucan (storage polysaccharide) prepared from brown algae

So, it must be too small, right?
The Phagocytic Synapse in Distinguishing Particulate and Soluble Stimuli
David M. Underhill

β-glucan
β-(1,3)-glucan
β-(1,6)-glucan branch
MW = 1500 Da

Dectin-1
β-glucan
MMDB ID: 64601
β-glucan
Jones & Coworkers, Protein Science (2007)
MW = 1500 Da

MW = 32 KDa
The Phagocytic Synapse in Distinguishing Particulate and Soluble Stimuli
David M. Underhill

MW = 130 KDa

MW = 400 KDa

β-glucans have many structures, there will be many binding sites available

MW = 400 KDa

So we got some β-glucans...

Laminarin avg. 10 kDa From Seaweed
Low MW avg. 16 kDa
Med. MW avg. 150 kDa
Med. High MW avg. 220 kDa
High MW avg. 400 kDa
Whole Glucan Partides >95% pure From S. cerevisiae

The screen versions of these slides have full details of copyright and acknowledgements
The Phagocytic Synapse in Distinguishing Particulate and Soluble Stimuli

David M. Underhill

Soluble β-glucans bind to Dectin-1

Wild type

Dectin-1+/+

Dectin-1-/-

DTAF-MMW (220 kDa)

Bright field

13

Soluble glucans do not work – regardless of their size or the assay

A

B

C

D

E

F

G

14

How does Dectin-1 discriminate between soluble and particulate β-glucans?

15
The Phagocytic Synapse in Distinguishing Particulate and Soluble Stimuli
David M. Underhill

Im mobilized β-glucans trigger Dectin-1 signaling

Immobilized β-glucans trigger Dectin-1 signaling

0 1 2 3 4 5
ng/ml

unstim. MHMW HMW cMHMW cHMW

Soluble

Soluble glucans coated onto bottoms of tissue culture plates

wild type Dectin-1

β-glucans

Immunological synapse

Immunological synapse

Resting T cell Plasma Membrane
Abundant Phosphatase (CD45) Primes Signaling Kinases, but Generally Prevents Spurious TCR Signaling

Antigen Presenting Cell

ICAM1

MHC/peptide

Signaling

APC

CD45

TCR

Immunological synapse (2)
The Phagocytic Synapse in Distinguishing Particulate and Soluble Stimuli
David M. Underhill

CD45 and CD148

- Membrane tyrosine phosphatases
- Dual role in ITAM signaling
 1. Activating – remove inhibitory phosphorylation from Src-family kinases
 2. Inhibitory – limit downstream Tyr kinase-based signaling

19

CD45ABC

\[\approx 50 \text{ nm} \]
\[\approx 20-30 \text{ nm} \]

phosphatase domains (active)

CD45RO

\[\approx 13 \text{ nm} \]

20

Zap70

CD45

CD4

\(\text{CD4} \) alternatively spliced

- CD45 is found on the surface of all nucleated hematopoietic cells
- On T and B cells it comprises up to 10% of the cell surface area
- The cytoplasmic tail contains two phosphatase domains
- Although there is low sequence identity between extracellular regions in different species, the cytoplasmic region is highly conserved

21

The screen versions of these slides have full details of copyright and acknowledgements
The Phagocytic Synapse in Distinguishing Particulate and Soluble Stimuli
David M. Underhill

Do CD45 and CD148 regulate Dectin-1 signaling?

Reactive Oxygen Production

- CD148-/-
- CD45-/-
- CD45-/- CD148-/-

Do Dectin-1 & CD45 form a synapse-like structure during phagocytosis?

Dectin-1 phagocytic synapse

Do CD45 and CD148 regulate Dectin-1 signaling?

Reactive Oxygen Production

- CD148-/-
- CD45-/-
- CD45-/- CD148-/-

Do Dectin-1 & CD45 form a synapse-like structure during phagocytosis?

Dectin-1 phagocytic synapse

The screen versions of these slides have full details of copyright and acknowledgements
The Phagocytic Synapse in Distinguishing Particulate and Soluble Stimuli
David M. Underhill

Dectin-1 phagocytic synapse (2)

Dectin-1 (Green)
CD45 (Red)
Zymosan (Blue)

Dectin-1 phagocytic synapse (3)

Dectin-1-expressing RAW264.7 macrophages

Dectin-1 phagocytic synapse – Aspergillus fumigatus

Dectin-1/CD45-expressing RAW264.7 macrophages

The screen versions of these slides have full details of copyright and acknowledgements
The Phagocytic Synapse
in Distinguishing Particulate and Soluble Stimuli
David M. Underhill

Soluble glucans bind & cluster Dectin-1, but do not sufficiently exclude the membrane phosphatases to allow signaling to progress.

Soluble glucans immobilized on a plastic surface activate signaling.
The Phagocytic Synapse
in Distinguishing Particulate and Soluble Stimuli
David M. Underhill

Dectin-1 phagocytic synapse
– plate-coated β-glucan

Uncoated

HMM β-glucan-coated

Dectin-1 CD45

What happens if you also coat the plastic surface with anti-CD45 antibodies as well to prevent movement of the proteins?

CD45 co-immobilization

The screen versions of these slides have full details of copyright and acknowledgements
The Phagocytic Synapse in Distinguishing Particulate and Soluble Stimuli
David M. Underhill

Summary

- “Phagocytic synapse” formation allows a cell to distinguish between microbes in the immediate vicinity and components shed from microbes at a distance
- Prevents inappropriate initiation of phagocytosis and direct anti-microbial responses

On the term “phagocytic synapse”

- The term “phagocytic synapse” or “engulfment synapse” has previously been proposed in the literature to describe the re-organization of macrophage cell surface proteins upon engagement of apoptotic cells
- In this context, the term has been applied simply to denote the “points of contact” between phagocytic cells and the receptors & ligands found there
- It is not clear yet whether this contact site bears any functional similarity to the “Immunological Synapse” that forms between an APC and a T cell
- It is this similarity that has lead to the use of the term “Phagocytic Synapse” to denote the mechanism by which cells discriminate soluble from particulate ligands

Do other receptors require a “phagocytic synapse”?

Myosin II-dependent exclusion of CD45 from the site of Fcγ receptor activation during phagocytosis

Myosin II contributes to FcγR activation and subsequent F-actin assembly at the nascent phagocytic cup; while FcγRs cluster beneath an IgG-opsonized particle without myosin II activity, myosin II is required to exclude CD45 and permit full activation of signaling and phagocytosis
Further reading: