Hepatic Encephalopathy in Cirrhosis: a Disorder of Glial-Neuronal Signalling

Prof. Roger F. Butterworth, Ph.D., D.Sc.

Classification of hepatic encephalopathy (HE)

- Type A: associated with acute liver failure
- Type B: associated with portosystemic bypass with no intrinsic hepatocellular disease
- Type C: associated with cirrhosis and portal hypertension

Hepatic encephalopathy in cirrhosis

- Neuropsychiatric syndrome
- Personality changes, sleep disorders
- Attention deficit, motor incoordination
- Asterixis
- Stupor
- Coma
Hepatic Encephalopathy in Cirrhosis: a Disorder of Glial-Neuronal Signalling
Prof. Roger F. Butterworth, Ph.D., D.Sc.

Hepatic encephalopathy in cirrhosis (2)
- Major impact on quality of life
- Precipitating factors
 - Protein load
 - Gastrointestinal bleed
 - Sedatives
 - Hypoglycemia
 - Infection

Transjugular intrahepatic portosystemic shunt (TIPS)
- Treatment of portal hypertension in cirrhosis
- Prevention of gastro-intestinal bleeding
- Effectively a liver bypass
- Artificial channel to link in-flow (portal vein) and out-flow (hepatic vein) in cirrhosis

Hepatic encephalopathy post-TIPS
- New or worsening encephalopathy in ~50% of cases
- Predictors
 - Prior encephalopathy
 - Non-alcoholic etiology
 - Hypoalbuminemia
 - Patient age

The screen versions of these slides have full details of copyright and acknowledgements
Hepatic Encephalopathy in Cirrhosis: a Disorder of Glial-Neuronal Signalling
Prof. Roger F. Butterworth, Ph.D., D.Sc.

Survival in TIPS patients as a function of grade of HE

- Survival decreases as grade of HE increases.
- Grade HE=0 shows the highest survival rate.

Neuropathology of HE in chronic liver failure

- Normal astrocytes (N)
- Alzheimer type 2 astrocytosis (ALZ)

Pathogenesis of HE in cirrhosis: Neuroimaging

- Magnetic resonance imaging (MRI)
- Positron emission tomography (PET)
Hepatic Encephalopathy in Cirrhosis: a Disorder of Glial-Neuronal Signalling
Prof. Roger F. Butterworth, Ph.D., D.Sc.

T1-weighted MRI due to manganese deposition in basal ganglia of cirrhotic patients

C (control) P (patient(s))

Manganese (μg/g dry WT)

C P

Globus pallidus

Cirrhosis-related Parkinsonism: MRI findings

• Burkhard et al., Arch Neurol 60: 521-528, 2003
• Extensive hyperintensities involving both substantia nigra and globus pallidus

Cirrhosis-related Parkinsonism

• Burkhard et al., Arch Neurol 60: 521-528, 2003
• 22% of 51 cirrhotic patients screened prior to LT showed moderate to severe Parkinsonism
 • Chronic
 • Rapidly progressive over months
 • Symmetric akinetic-rigid syndrome
 • Postural (but not resting) tremor
 • Early postural and gait impairment
• Attributed to manganese deposition in basal ganglia

2 patients treated with L-DOPA: both showed improvement
Hepatic Encephalopathy in Cirrhosis:
a Disorder of Glial-Neuronal Signalling
Prof. Roger F. Butterworth, Ph.D., D.Sc.

Pathogenesis of HE in cirrhosis:
Neuroimaging

• Magnetic resonance imaging (MRI)
• Positron emission tomography (PET)

Positron emission tomography (PET)
studies in cirrhosis

• Fluorodeoxyglucose

Fluorodeoxyglucose-PET showing
deactivation of anterior cingulate cortex
correlation with abnormal NCT-B test

Anterior cingulate cortex

Lockwood et al., Metab Brain Dis., 2002

The screen versions of these slides have full details of copyright and acknowledgements
Hepatic Encephalopathy in Cirrhosis: a Disorder of Glial-Neuronal Signalling
Prof. Roger F. Butterworth, Ph.D., D.Sc.

NCT-B test

Positron emission tomography (PET) studies in cirrhosis

- Fluorodeoxyglucose
- 13N-ammonia

13NH$_3$ PET images of brain in a cirrhotic patient with mild HE

<table>
<thead>
<tr>
<th></th>
<th>CBF</th>
<th>CMRA</th>
<th>PS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arterial NH$_3$ (mM)</td>
<td>0.03±0.007</td>
<td>0.06±0.02</td>
<td></td>
</tr>
<tr>
<td>CMR/NH$_3$</td>
<td>0.35±0.15</td>
<td>0.91±0.36*</td>
<td></td>
</tr>
<tr>
<td>BBB transfer (NH$_3$) (ml/g/min)</td>
<td>0.13±0.03</td>
<td>0.22±0.07*</td>
<td></td>
</tr>
</tbody>
</table>

*p<0.01

Lockwood, J Cerebr Blood Flow & Metab., 2007

The screen versions of these slides have full details of copyright and acknowledgements
Hepatic Encephalopathy in Cirrhosis: a Disorder of Glial-Neuronal Signalling
Prof. Roger F. Butterworth, Ph.D., D.Sc.

Neuroinflammation and hepatic encephalopathy in cirrhosis

Systemic inflammatory response syndrome (SIRS) in cirrhosis
- Functionally immunosuppressed
- Impaired host defenses
- Increased TNFα, IL-1β
- Multiple cells involved (monocytes, neutrophils, lymphocytes, Kupffer cells)

Circulating TNFα in cirrhotic patients with grades 0-4 hepatic encephalopathy

The screen versions of these slides have full details of copyright and acknowledgements
Hepatic Encephalopathy in Cirrhosis: a Disorder of Glial-Neuronal Signalling
Prof. Roger F. Butterworth, Ph.D., D.Sc.

Serum TNFα as a function of improvement of HE grade in cirrhosis

![Graph showing serum TNFα levels as a function of HE grade improvement](image)

Microglial activation in BDL model of biliary cirrhosis

- D’Mello et al., *J Neurosci*, 2009

Translocator protein and hepatic encephalopathy in cirrhosis
Translocator protein

• Mitochondrial location, particularly in astrocytes and microglia
• Catalyzes cholesterol transport across mitochondrial membrane
• Activated by both ammonia and manganese

Translocator protein complex

End-stage liver failure results in increased expression of IBP, a key subunit of translocator protein
Hepatic Encephalopathy in Cirrhosis: a Disorder of Glial-Neuronal Signalling
Prof. Roger F. Butterworth, Ph.D., D.Sc.

Increased translocator protein ([3H]-PK11195) sites in human HE brain

PET imaging using the translocator protein ligand 11C-PK11195 indicative of microglial activation

Translocator protein activation by ammonia or manganese leads to increased synthesis of neurosteroids

The screen versions of these slides have full details of copyright and acknowledgements
Hepatic Encephalopathy in Cirrhosis: a Disorder of Glial-Neuronal Signalling

Prof. Roger F. Butterworth, Ph.D., D.Sc.

Modulatory site for neurosteroids on the GABA-A receptor
- Gated Cl⁻ channel
- Mediates fast inhibitory neurotransmission
- GABA recognition site
- Several modulator sites:
 - Barbiturates
 - Benzodiazepines
 - Neurosteroids (allopregnanolone)

GABA-A receptor activation by neurosteroids: glial-neuronal signalling

Concentrations of allopregnanolone are increased in autopsied brain tissue from cirrhotic patients who died in hepatic coma

Ahboucha et al., Ann Neurol., 2005
Hepatic Encephalopathy in Cirrhosis: a Disorder of Glial-Neuronal Signalling
Prof. Roger F. Butterworth, Ph.D., D.Sc.

Prevention and treatment of HE in cirrhosis

34

Prevention and treatment of HE in cirrhosis (2)

- Treatment of precipitating factors:
 - Dietary protein overload
 - Gastrointestinal haemorrhage
 - Infection
 - Constipation
 - Dehydration
 - Hypokalemia
 - Hypoglycemia
 - Hypoxia
 - Sedative drugs (benzodiazepines)

35

Prevention and treatment of HE in cirrhosis (3)

- Nutrition
 - Start with 40 g protein per day, increase gradually every 3-5 days to 1-2 g/kg/day
 - Care(f) to avoid a negative nitrogen balance, do not reduce below 40 g/day
 - Benefit of vegetable versus animal protein

36
Prevention and treatment of HE in cirrhosis (4)

- Non-metabolizable disaccharides
 - Inhibit ammonia-producing bacteria (lower colonic pH)
 - Displacement of urease-containing bacteria
 - Cathartic effect
 - Lactulose (β-galactosidofructose)
 - Introduced 35 years ago
 - No adequate controlled clinical trials but still treatment of choice
 - Doses 45-90 g/day; Titrate to 2/3 soft stools/day
 - Lactitol (β-galactosidosorbitol)
 - As effective as lactulose
 - Fewer side effects
 - Less expensive

Prevention and treatment of HE in cirrhosis (5)

- Antibiotics
 - Reduce bacterial ammonia production in the colon
 - Neomycin, paromomycin (aminoglycosides)
 - Aminoglycosides are ototoxic/nephrotoxic; limit use to 1 month
 - Metronidazole, vancomycin; Use limited by adverse events
 - Rifaximin; Non-absorbable antibiotic, high efficacy, minimal adverse events

L-ornithine L-aspartate (LOLA) lowers circulating ammonia and improves NCT scores in cirrhotic patients

Fasting ammonia

NCT-A

Kircheis et al., Hepatology, 1997
Hepatic Encephalopathy in Cirrhosis: a Disorder of Glial-Neuronal Signalling
Prof. Roger F. Butterworth, Ph.D., D.Sc.

Summary: therapies based on improvement of inter-organ trafficking of ammonia in HE

- L-OA
- Lactulose, rifaximin

Prevention and treatment of HE in cirrhosis

- Flumazenil
 - Central benzodiazepine receptor antagonist
 - No intrinsic actions – counteracts effects of benzodiazepines
 - Short half-life (1-2h in cirrhotic patients)
 - Controlled trials show small positive effect, may be primarily due to action on circulating pharmaceutical benzodiazepines

Flumazenil in HE: results of a meta-analysis

<table>
<thead>
<tr>
<th>Study</th>
<th>Number (% of HE)</th>
<th>Placebo</th>
<th>T2</th>
<th>T1</th>
<th>Flumazenil</th>
<th>Placebo</th>
<th>T2</th>
<th>T1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lefebvre & Al</td>
<td>101/562</td>
<td>51/51</td>
<td></td>
<td></td>
<td>49/51</td>
<td>50/50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catheline & Al</td>
<td>160/800</td>
<td>80/80</td>
<td></td>
<td></td>
<td>80/80</td>
<td>80/80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Owen 2001</td>
<td>60/600</td>
<td>30/30</td>
<td></td>
<td></td>
<td>30/30</td>
<td>30/30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gir 1996</td>
<td>100/500</td>
<td>50/50</td>
<td></td>
<td></td>
<td>50/50</td>
<td>50/50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>King 1996</td>
<td>87/435</td>
<td>43/43</td>
<td></td>
<td></td>
<td>43/43</td>
<td>43/43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lefebvre 2001</td>
<td>120/600</td>
<td>60/60</td>
<td></td>
<td></td>
<td>60/60</td>
<td>60/60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhu 2002</td>
<td>177/561</td>
<td>89/89</td>
<td></td>
<td></td>
<td>89/89</td>
<td>89/89</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Favours Flumazenil, Placebo
Hepatic Encephalopathy in Cirrhosis: a Disorder of Glial-Neuronal Signalling
Prof. Roger F. Butterworth, Ph.D., D.Sc.

Prevention and treatment of HE in cirrhosis

- Emerging new therapeutic approaches:
 - Liver assist devices (cultured hepatocytes, activated charcoal, albumin)
 - Probiotics
 - L-DOPA (may improve Parkinsonian symptoms)

Take home messages

1. HE in cirrhosis associated with cognitive, motor and psychiatric symptoms
 - High prevalence post-TIPS
 - Major impact on quality of life
2. Both global and focal changes of brain metabolism occur in cirrhosis
 - Ammonia accumulation throughout the brain
 - Manganese accumulation in globus pallidus (MR signal hyperintensities)
 - Anatomy of attention deficit in cirrhosis – anterior cingulate cortex

Take home messages (cont’d)

3. Neuroglial changes in cirrhosis:
 - Alzheimer type II astrocytosis
 - Microglial activation, neuroinflammation
 - Induction of translocator protein (astrocytes and microglia) by ammonia and manganese, neurosteroid production
4. Treatment options for HE in cirrhosis:
 - Treat precipitating factor
 - Maintain protein at 1-2g/kg/day
 - Lower circulating ammonia
 - Lactulose, antibiotics (gut)
 - L-ornithine L-aspartate (muscle, liver)
 - Probiotics
5. Neuropharmacology
 - Flumazenil (for E-precipitated component of encephalopathy)
 - L-DOPA, bromocriptine (cirrhosis-related Parkinsonism)
 - Limited translational research in this area

The screen versions of these slides have full details of copyright and acknowledgements
Hepatic Encephalopathy in Cirrhosis: a Disorder of Glial-Neuronal Signalling

Prof. Roger F. Butterworth, Ph.D., D.Sc.

Acknowledgements

Neuroscience Research Unit (Université de Montréal - Hôpital Saint-Luc)
Daniel Niculescu, Ph.D.
Chantal Bémaur, Ph.D.
Elizabeth Beaucage, M.Sc.
Elie Sawana M.D.

Liver Unit (Université de Montréal)
Gilles Pomier-Layrargues, M.D.
Hélène Chen, M.D.
Hélène Zierempek, Ph.D.

Instituto Investigaciones Citológicas, FVIB
Valencia, Spain
Claudia Zehnder, Ph.D.
Claudia Zehnder, Ph.D.

Northwestern University, Chicago, USA
Andy Blei, M.D.
Cherry Thomas, Ph.D.

Iwate Medical School, Morioka, Japan
Kazu Suzuki, M.D.
Akinobu Kato, M.D.

Akinobu Kato, M.D.

The screen versions of these slides have full details of copyright and acknowledgements

16