Enteric Glia
The “glue” of the enteric nervous system
Keith A. Sharkey

Enteric Glia
The “Glue” of the Enteric Nervous System

Prof. Keith A. Sharkey
Hotchkiss Brain Institute
Department of Physiology & Pharmacology
University of Calgary
Calgary, Alberta
Canada

Enteric glial cells

• Anatomical and functional standpoint
• Glia play important metabolic and functional roles in terms of neurotransmission

Acknowledgements

• Dr. Brian D. Gulbransen, Department of Physiology, Michigan State University, made some of the slides in this presentation and contributed to the development of many of the ideas presented below
• Dr. Yasmin Nasser, Department of Medicine, University of Calgary, contributed to the initial development of the concepts in this presentation
• Winnie Ho and Cathy MacNaughton contributed to all aspects of the research from my lab presented below
• My thanks to the many collaborators who contributed to various studies whose data are presented below

The screen versions of these slides have full details of copyright and acknowledgements
The gut and its brain

- The gastrointestinal (GI) tract – gut - is a vital organ for life
- The digestion of food is a complex process requiring precise coordination
- The gut has to move food along its length, digest and absorb nutrients and ultimately eliminate waste and undigested materials
 - It takes a “brain” to detect, initiate and control GI motility and regulate the processes of digestion

The gut and its brain (2)

- Digestion is itself a dangerous process; Food is rarely sterile and the processes of digestion create food antigens that themselves may be harmful
- Therefore, exposure to antigens, toxins, environmental irritants, parasites and infectious agents places an additional burden on the GI tract
 - A “brain” is required to control the processes of host defense

The gut and its brain (3)

- The “brain” in the wall of the gut is the enteric nervous system (ENS)
- The ENS is the 3rd division of the autonomic nervous system
- The ENS is composed of two ganglionated nerve plexuses:
 - The myenteric plexus lies between the external muscle layers
 - The submucosal plexus lies in the submucosa
Enteric Glia
The “glue” of the enteric nervous system
Keith A. Sharkey

The anatomy of the ENS

The gut and its brain (4)

- The two ganglionated nerve plexuses consist of enteric neurons and enteric glia, and a dense neuropil that is more CNS-like than other parts of the autonomic nervous system
 - There are about as many neurons in the ENS as there are in the spinal cord
 - Enteric neurons have extensive synaptic connections and innervate the cells that make up the wall of the gut

Enteric glia

- First described by Dogiel in 1899
- Detailed anatomical characterization of ganglionic glia was made by Gabella (1970s)
Enteric glia (2)

- Cell bodies of enteric glia are smaller than enteric neurons.
- In enteric ganglia, enteric glia are irregular stellate-shaped cells.
- Enteric glia characteristically express an extensive network of gliofilaments.
- Enteric glia are derived from neural-crest progenitors.

Enteric glia (3)

- Gabella was the first to describe axonal specializations contacting enteric glia; he termed them “neuroglial junctions.”

Enteric glia surround enteric neurons

- They express glial fibrillary acidic protein (GFAP) and S100.
- Enteric glia are similar to CNS astrocytes.
- Enteric glia slightly outnumber enteric neurons.
Enteric Glia
The “glue” of the enteric nervous system
Keith A. Sharkey

Enteric glia surround enteric neurons (2)

• (a) There is a similar relationship between astrocytes [green] and neurons [magenta] in the mouse cortex and (b) enteric glia [green] and enteric neurons [magenta] in the myenteric plexus.

Enteric glia surround enteric neurons (3)

• At the cellular level, enteric glia wrap around enteric neurons in a similar manner to that seen in the CNS.

Four types of enteric glia have been described in the wall of the gut.

The screen versions of these slides have full details of copyright and acknowledgements.
Enteric Glia
The “glue” of the enteric nervous system
Keith A. Sharkey

Four types of enteric glia have been described in the wall of the gut (2)

Mucosal enteric glia

Mucosal enteric glia regulate epithelial barrier function

Savidge et al., Gastroenterology 2007; 132: 1344-1358

The screen versions of these slides have full details of copyright and acknowledgements
Enteric Glia
The “glue” of the enteric nervous system
Keith A. Sharkey

Mucosal enteric glia regulate epithelial barrier function (2)

- Co-culture of enteric glia with epithelial cells enhances intestinal barrier function – structurally and functionally

Taken from Savidge et al., Gastroenterology 2007; 132: 1344-1358

Mucosal enteric glia regulate epithelial barrier function (3)

- s-nitrosoglutathione (GSNO) has been identified as the molecule secreted by enteric glia to enhance epithelial barrier function

Taken from Savidge et al., Gastroenterology 2007; 132: 1344-1358

Mucosal enteric glia regulate epithelial barrier function (4)

- Ileal injury induced by burn injury was reduced by vagal nerve stimulation
- This effect is associated with enhanced enteric glial GFAP expression
- GSNO mimics the effects of vagal nerve stimulation on burn-injury induced epithelial permeability

Costantini et al., Am. J. Physiol. GI & Liver 2010; 299: G1308-G1318

The screen versions of these slides have full details of copyright and acknowledgements
Enteric Glia
The “glue” of the enteric nervous system
Keith A. Sharkey

Enteric glia regulate epithelial cell differentiation and proliferation

- Enteric glia synthesize and secrete the PPARg ligand 15-deoxy-Δ12,14-prostaglandin J2
- This ligand inhibits epithelial cell proliferation

Taken from Bach-Ngohou et al., J. Physiol. 2010; 588: 2533-2544

Enteric glia regulate epithelial cell differentiation and proliferation (2)

- Co-culturing enteric glia with epithelial cells enhances markers of differentiation
- These effects are abrogated by blocking PPARg

Taken from Bach-Ngohou et al., J. Physiol. 2010; 588: 2533-2544

Intraganglionic enteric glia

The screen versions of these slides have full details of copyright and acknowledgements
Enteric glia “listen” to enteric nerves

- Enteric glia in the myenteric and submucosal plexuses express receptors for many enteric neurotransmitters
- Some of these receptors elicit functional responses in enteric glia in situ
- Enteric glia potentially serve to integrate and regulate aspects of neurotransmission in the ENS

Enteric glia “listen” to enteric nerves (2)

MGluR5 activation upregulates pERK1/2 and cFos in enteric glia

Taken from Nasser et al., Glia 2007; 55: 859-872
Enteric Glia
The “glue” of the enteric nervous system
Keith A. Sharkey

Use of calcium imaging to visualize activity in enteric glia

Slide from B. Gulbransen (Michigan State University)

ATP stimulates enteric glia in situ

Original data from Gulbransen & Sharkey, Gastroenterology 2009; 136: 1349-1358

ATP stimulates enteric glia in situ (2)

Original data from Gulbransen & Sharkey, Gastroenterology 2009; 136: 1349-1358

The screen versions of these slides have full details of copyright and acknowledgements
Do enteric glia respond to neuronal activity?

Focal nerve stimulation activates glial Ca\(^{2+}\) responses _in situ_ (2)

Original data from Gulbransen et al., _J. Neurosci_. 2010; 30: 6801-6809
Enteric Glia
The “glue” of the enteric nervous system
Keith A. Sharkey

Original data from Gulbransen & Sharkey
Gastroenterology 2009;136:1349-1358

Enteric glia express P2Y4 and not P2Y11

Summary
• Enteric glia respond to ATP in situ
 ➢ Likely mediated by P2Y4 receptors in GP colon MP
• Purinergic neuron-glia signaling occurs in the ENS

Original data from Gulbransen & Sharkey
Gastroenterology 2009;136:1349-1358

The screen versions of these slides have full details of copyright and acknowledgements
Enteric Glia
The “glue” of the enteric nervous system
Keith A. Sharkey

Is there any selectivity to enteric glial cell activation?

Which neuronal component(s) of the ENS “talk” to glia?

Enteric glia detect activity in specific neural pathways

The screen versions of these slides have full details of copyright and acknowledgements
Enteric Glia
The “glue” of the enteric nervous system
Keith A. Sharkey

Nicotinic stimulation of enteric neurons does not activate glial Ca^{2+} responses

Ave glial resp
Ave nn resp

Enteric neuron

Ave glial resp
Ave nn resp

Gulbransen et al., J. Neurosci. 2010, 30: 6801-6809

Myenteric P2X7 expression and function

P2X7-mediated enteric neuron-to-glia communication

Enteric Glia
The “glue” of the enteric nervous system
Keith A. Sharkey

P2X7-mediated enteric neuron-to-glia communication (2)

Glia
Enteric neuron

Enteric neuron
Glia

Glia ectonucleotidases regulate functional responses

Enteric neuron

Pannexin-1 channels are linked to P2X receptors and can release ATP
Enteric Glia
The “glue” of the enteric nervous system
Keith A. Sharkey

Neurons release ATP via pannexin-1 channels

Enteric glia detect intrinsic and extrinsic neural activity by monitoring extracellular purines

Enteric glia are activated during the colonic migrating motor complex
- Enteric glia appear to integrate neural activity during physiological motor activity in the colon

The screen versions of these slides have full details of copyright and acknowledgements
Enteric Glia
The “glue” of the enteric nervous system
Keith A. Sharkey

Functional glial ablation reduces GI motor function in the mouse

- The gliotoxin fluorocitrate reduces intestinal motor function in vivo and in vitro

Gliogenesis and neurogenesis

- Inflammation of the GI tract causes glial cell division (red, BrDU; green, S100)

The screen versions of these slides have full details of copyright and acknowledgements
Enteric Glia
The “glue” of the enteric nervous system
Keith A. Sharkey

GFAP expression is enhanced in colitis in GFP-GFAP transgenic mice

• Inflammation of the GI tract causes enhanced GFAP expression

Neurogenesis

• Under culture conditions and after injury enteric glia may de-differentiate and form new enteric neurons

Summary
Enteric Glia
The “glue” of the enteric nervous system
Keith A. Sharkey

Enteric glia – key points

- Unique populations of glial cells reside at multiple levels through the gut wall along the length of the gastrointestinal tract
- At the level of the mucosa, enteric glia influence epithelial cells and, thus, epithelial barrier function
- Within enteric ganglia, enteric glia are similar to the astrocytes of the central nervous system, detecting and integrating neural activity
- Enteric glia have the potential to modulate enteric neurotransmission, but exactly how they influence enteric circuits is unknown
- Enteric glia have a neurogenic capacity in vitro that seems to be largely suppressed in vivo

Acknowledgements

- Funding for the original research presented above came from:

The screen versions of these slides have full details of copyright and acknowledgements
Enteric Glia
The “glue” of the enteric nervous system
Keith A. Sharkey

References

- Gomes, P. et al. ATP-dependent paracrine communication between enteric neurons and glia in a primary cell culture derived from embryonic mice. J Neurogastroenterol Motil 11, 870-8 (2009)