Biomarkers for Alzheimer’s Disease

Henrik Zetterberg, MD, PhD
Professor of Neurochemistry
The Sahlgrenska Academy, University of Gothenburg

Alzheimer’s disease

Neuropathological criteria for Alzheimer’s disease

Modified from: Blennow et al., Lancet 2006
Biomarkers for Alzheimer’s disease
Prof. Henrik Zetterberg

Distribution of brain changes in Alzheimer’s disease

Mild cognitive impairment
Mild dementia
Moderate dementia
Severe dementia

Molecular pathology

- Senile plaques are composed of a 42 amino acid long aggregation-prone protein called amyloid b42 (Aβ42)
- Neurofibrillary tangles are composed of hyperphosphorylated isoforms of the intraneuronal protein tau (P-tau)
- Neuroaxonal degeneration is reflected by release of intraneuronal tau proteins (all isoforms, total-tau; T-tau) into the brain interstitial fluid that communicates freely with CSF

Choosing the sample for biomarker analysis

Brain
CSF
Blood

Proximity to disease
Accessibility
Concentration of analyte
Proteolytic degradation
Biomarkers for Alzheimer’s disease
Prof. Henrik Zetterberg

Cerebrospinal fluid

Total volume: 150 mL, production rate: 20 mL per hour
Standard volume of sampling: 10-12 mL

Is lumbar puncture dangerous?

Consecutive studies on complications after LP

<table>
<thead>
<tr>
<th>Study</th>
<th>No. of cases</th>
<th>Post LP headache</th>
<th>Meningitis / hematoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blennow et al., 1993</td>
<td>395</td>
<td>2.1%</td>
<td>0</td>
</tr>
<tr>
<td>Andreasen et al., 2001</td>
<td>241</td>
<td>4.1%</td>
<td>0</td>
</tr>
<tr>
<td>Peskind et al., 2005</td>
<td>342 (428 LP)</td>
<td>0.9%</td>
<td>0</td>
</tr>
<tr>
<td>Zetterberg et al., Eur Neurol, 2010</td>
<td>1089</td>
<td>0.9%</td>
<td>0</td>
</tr>
</tbody>
</table>

Core CSF biomarkers for Alzheimer’s pathology
Biomarkers for Alzheimer’s disease
Prof. Henrik Zetterberg

CSF biomarkers for Alzheimer’s pathology - candidates

- Neurofibrillary tangles (P-tau)
- Axonal injury (T-tau)
- Inflammation (IgG/IgM production)
- Oxidative stress (F2-isoprostanes)
- Blood-brain barrier damage (CSF/serum albumin ratio)

Amyloid pathology
- Aβ42 / Aβ40
- β-secretase / α-secretase
- BACE1 activity

Neurofibrillary tangles
- P-tau
- T-tau

Axonal injury
- T-tau

Different uses of biomarkers in the evaluation of patients with memory problems

1. To diagnose neuroinflammatory and neuroinfectious conditions
 - CSF cell count
 - Albumin ratio
 - Intrathecal IgG and IgM production
 - Specific inflammatory markers

2. Specific markers of AD neuropathology
 - T-tau, P-tau and Aβ42 as supporting diagnostic markers in the clinic
 - T-tau, P-tau and Aβ42 as additional inclusion criteria in studies of anti-AD drugs

3. Specific markers for drug effect monitoring
 - Reduced levels of T-tau after treatment indicate less intense axonal degeneration

CSF biomarkers for AD: Ab1-42

- β-secretase / α-secretase
- Plasma membrane
- BACE1
Biomarkers for Alzheimer’s disease
Prof. Henrik Zetterberg

Study design:
• Consecutive AD cases from a community-based sample
• AD (n=53), healthy controls (n=21)

CSF biomarkers for AD: Ab42

Andreasen et al., Arch Neurol 56:673, 1999

Study design:
• 155 autopsy cases
• Plaque counts - Bielschowsky stain of neocortex and hippocampus
• Post-mortem CSF samples

Data adjusted for:
• Age at death
• Education
• Dementia severity
• ApoE4
• Time from diagnosis until death
• PM interval
• Time until Ab42 analysis
• CAA severity

CSF Ab42 reflects plaque pathology

Stroop et al., Neurology 60:652-656, 2003

CSF Ab42 reflects plaque pathology (2)

General idea verified in PIB-PET studies:
• Negative correlation between CSF-Ab42 and PIB retention in the brain

Fagan AM et al., Ann Neurol 2006
Forsberg A et al., Neurobiol Aging 2008

Posterior cingulum

Fagan AM et al., Ann Neurol 2006
Forsberg A et al., Neurobiol Aging 2008

The screen versions of these slides have full details of copyright and acknowledgements
Biomarkers for Alzheimer’s disease
Prof. Henrik Zetterberg

Diagnostic value

High total-tau and phospho-tau and low Ab1-42 in CSF
= 85-95% sensitive and specific for AD in AD-control
and longitudinal MCI studies

>100 papers

Prediction of incipient AD
in MCI cases using CSF biomarkers

Study design:
- Follow-up study on MCI (>4 years)
- Lumbar puncture and analysis of Ab42 and variants of tau in CSF
- MCI n=134
 57 MCI → AD
 56 MCI → MCI
 21 MCI → other dementias

Comb. of Ab42/P-tau and T-tau:
- Sens. for MCI-AD 95%
- Spec. against other MCI 87%

Prediction of AD within 10 years
in patients with MCI

Combination of Ab42/P-tau and T-tau:
- T-tau > 350 pg/mL
- Ab42 / P-tau ratio < 6.5
- Sens. for MCI-AD 88%
- Spec. non MCI-AD 94%
- PPV - 94%
- NPV - 89%
Biomarkers for Alzheimer’s disease
Prof. Henrik Zetterberg

CSF biomarkers for Alzheimer’s disease – diagnostic performance in a homogeneous mono-center population, 2010

- AD patients: n=32
- Stable MCI: n=13
- Other dementias: n=15
- Controls: n=20

Sensitivity 83% Specificity 88%

Prediction of incipient AD in MCI cases using CSF biomarkers in a multi-center study

MCI-AD vs. controls
MCI-AD vs. stable MCI + MCI-other

CSF T-tau (ng/L)

Sensitivity 83% Specificity 72%

Mattsson et al., JAMA 2009

The Alzheimer’s Association QC program for CSF biomarkers

- Goal 1 - Establish a standardized protocol for lumbar puncture and CSF processing
- Goal 2 - Monitor analytical variability
- Goal 3 - Establish a detailed protocol for laboratory procedures for AD CSF biomarkers
- Goal 4 - Improved quality and stability of assays

Please sign up if you perform Alzheimer biomarker analyses:
Neurochem@neuro.gu.se

The screen versions of these slides have full details of copyright and acknowledgements
Can CSF markers predict development of AD in pre-symptomatic individuals?

Study design:
- Population-based study, 55 healthy individuals
- LP at baseline, mean age 72
- Follow-up 8 years later: 45 remained normal, 10 AD with dementia or drop in MMSE > -5

Gustafson et al., JNNP 2007

Can CSF markers predict development of AD in pre-symptomatic individuals? (2)

Study design:
- Clinical study on 57 healthy elderly individuals
- LP at baseline
- Follow-up during 3 years

Storrued et al., Dement Geriatr Cogn Disord 2007; 24: 118-124

Can we measure Ab oligomers in CSF?

Abeta = ß-Amyloid
○ = biotin
□ = avidin-HRP
Y = 82E1, N-terminus-specific MAb
K = chemiluminescent substrate

Xia W et al., Arch Neurol. 2009 Feb; 66(2): 190-9
Fukumoto H et al., FASEB J. 2010 Aug; 24(8): 2716-26

The screen versions of these slides have full details of copyright and acknowledgements
Biomarkers for Alzheimer’s disease
Prof. Henrik Zetterberg

Can we measure Ab oligomers in CSF? (2)

Are CSF biomarkers dynamic?

Are CSF biomarkers dynamic? (2)
Biomarkers for Alzheimer’s disease
Prof. Henrik Zetterberg

AD drug development

If you are interested in details of this, please read:

Biomarkers in studies of inhibition of Ab aggregation

Change from Baseline at Week 12

Trial design:
- Randomized, double-blind,
- placebo-controlled, parallel study
- 12 weeks oral treatment with 0 mg (placebo), 50mg and 250mg of PBT-2
Biomarkers for Alzheimer’s disease
Prof. Henrik Zetterberg

CSF biomarkers in active Ab immunotherapy trials
CSF substudy in the AN1792 trial (active β-amyloid immunization)
• Paired CSF samples (baseline and 1 year) from AD cases:
 antibody responders n=11, placebo n=10
 Reduction with treatment (in antibody responders) on the downstream biomarker T-tau
 No clear effect on β-amyloid (Aβ42)

CSF biomarkers in passive Ab immunotherapy trials
Phase II bapineuzumab trials:
• CSF samples from 27 bapineuzumab and 19 placebo cases
• CSF samples taken at baseline and 1 year
 CSF T-Tau
 Change at Week 54 (pg/ml)
 Bapineuzumab Placebo
 -150 -100
 -50 0
 50 100
 p=0.0013
 CSF P-Tau
 Change at Week 54 (pg/ml)
 Bapineuzumab Placebo
 -15 -10
 -5 0
 5 10
 p=0.027
 p=0.0305

Phase III clinical trials on bapineuzumab
Phase III bapineuzumab APOE ε4 trial:
• Multicenter, randomized, double-blind, placebo-controlled trial
• Mild-moderate AD (MMSE 16-26)
• Bapineuzumab n=658
• Placebo n=432
Main outcome: change in ADAS-Cog over 18 months
Sperling R, presented at EFNS 2012
Biomarkers for Alzheimer’s disease
Prof. Henrik Zetterberg

CSF biomarkers in the Phase III bapineuzumab trial

- Phase III bapineuzumab APOE ε trial:
 - Multicenter, randomized, double-blind, placebo-controlled trial
 - Mild-moderate AD (MMSE 16-26)
 - Bapineuzumab: n=658
 - Placebo: n=432

Secondary outcome: change in CSF phospho-tau over 18 months

The current situation in AD drug development:

- Promising biomarker changes but no clinical benefit
- Too little, too late?
- Studies on preclinical AD needed
- Are we missing something?

Summary

- CSF biomarkers can monitor the neuropathology of AD:
 - T-tau is a marker of cortical axonal degeneration
 - P-tau is a marker of neurofibrillary tangle pathology
 - Ab1-42 is a marker of plaque pathology
- These markers have high diagnostic accuracy and have been implemented in the recently revised clinical criteria for Alzheimer’s disease (http://www.alz.org/research/diagnostic_criteria/)
- Current research is aiming at establishing biomarkers for microglial activation and synapse loss

Biochemical markers together with neuroimaging and clinical evaluation allow for making a pre-dementia diagnosis of AD and can be used to detect biochemical treatment effects in clinical trials of anti-AD drug candidates