

Thomas Areschoug

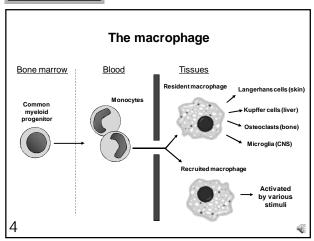
How Bacterial Pathogens Avoid Phagocyte Killing

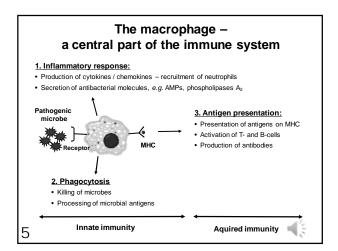
Thomas Areschoug

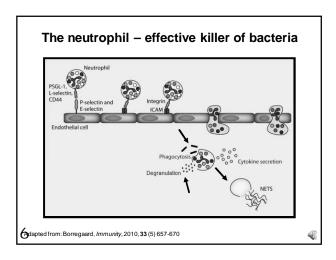
Associate professor
Department of Laboratory Medicine
Division of Medical Microbiology
Lund University
Sweden

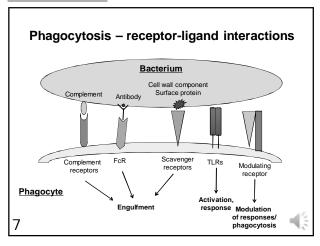
1	LUND UNIVERSITY

Bacterial	evasion	of	phagocyte	killing
Daotoriai	Olacioni	٠.	priagoogic	


- Important step in the pathogenesis of bacterial disease
- Numerous bacterial mechanisms to avoid phagocyte killing
- Studies of bacterial immune evasion mechanisms are not only important for our understanding of the molecular pathogenesis of bacterial disease, but may also reveal which part(s) of the host immune system are of importance for host protection against bacteria

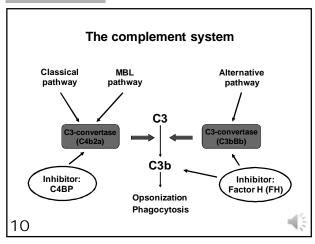

Aim of presentation


- Background on phagocytic cells macrophages and neutrophils
- Different types of phagocytosis and phagocytic killing mechanisms
- Examples of bacterial mechanisms to evade phagocytosis/phagocytic killing



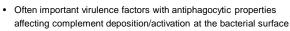
Thomas Areschoug

Phagocytosis – phago and intracellu	
Immediately after uptake – phagosom through fusion with: Early endosomes Multivesicular bodies Late endosomes Final step – fusion with a lysosome to form the phagolysosome; the lysosome contains a number of enzymes and anti-bacterial molecules that kill the bacterium	e maturation Peceptors phagosome hysosome phagolysosomes
The pH in the phagosome decreases during maturation from 7.4 to 4.5 when the phagolysosome is formed	swoodylanis.

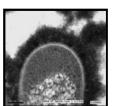

Bacterial mechanisms to evade phagocytosis/phagocytic killing

- 1. Evasion of complement-mediated phagocytosis
- 2. Evasion of non-opsonic phagocytosis
- 3. Targeting of inhibitory receptors
- 4. Evasion via T3SS
- 5. Increased intracellular survival

9



Thomas Areschoug

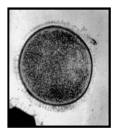


Evasion of complement – expression of a polysaccharide capsule

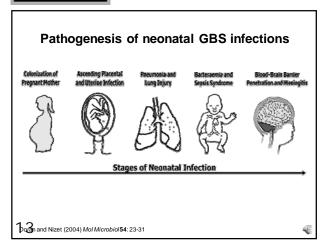
- Expression of polysaccharide capsule common among bacterial pathogens
 - Neisseria meningitidis
 - Haemophilus influenzae
 - Streptococcus pneumoniae
 - Group B streptococcus (GBS)

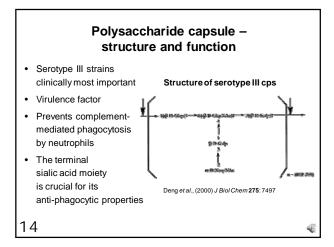
11

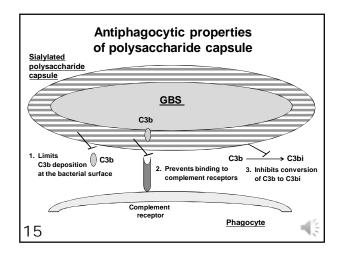
Group B streptococcus (GBS)

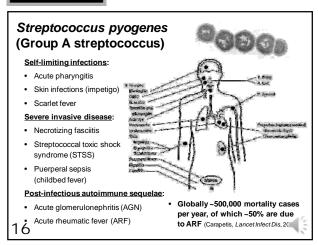

Neonatal infections

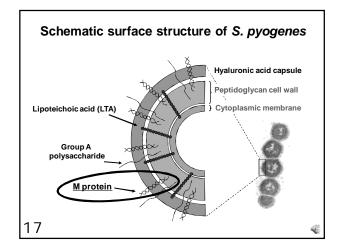
- The most common cause of life-threatening bacterial infections in newborns
- Pneumonia, septicaemia and meningitis

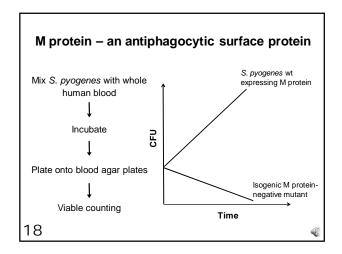

Infections in adults

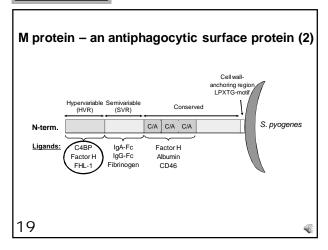

- Growing clinical problem
- Skin infections, urinary tract infections and meningitis in adults with underlying illness

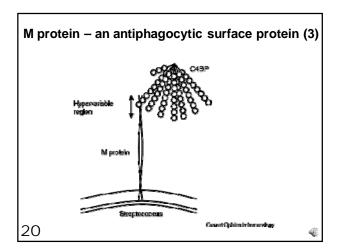

_
_

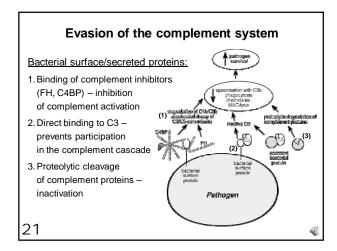


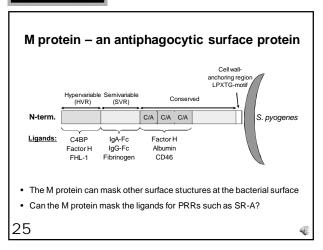


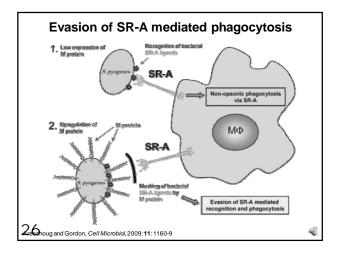










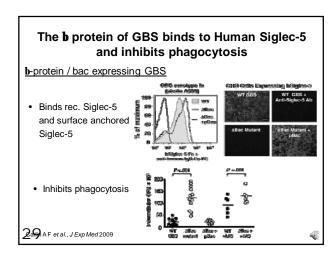


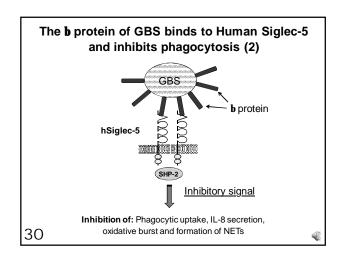
Bacterial mechanisms to ev	ade	
phagocytosis/phagocytic ki	lling	
1 3 3 3 7 3 3 4 7 3 3 4 7 4	•	
Evasion of non-opsonic phagocy	tocic	
Evasion of non-opsonic phagocy	lusis	
		-
22		
22	₩.	
Detterm measurable measurable	(DDD)	
Pattern recognition receptors	(PRR)	
1. <u>Signalling</u>		
Toll-like receptors (TLR) - trigger an intracell	ular signalling	
pathway which culminates in induction of proin		
cytokines, chemokines, type I interferon and su		-
activation of phagocytes		
2. Phagocytosis		
Scavenger receptor A (SR-A) - recognition/bi		
and non-opsonic phagocytosis of pathogenic n	nicrobes	
າວ	.75	
23	46	
		_
Scavenger receptor A (SR-	·A)	
Expressed by most MØ populations		
Endocytosis of ml DL contributes	SDCD daggette	
	SRCR domain: conserved	
E-st-sc*	unknown function	
Role in immunity	Collagen-like domain:	
	ritical for ligand binding	
Phagocytic recentor: mediates direct		
Thagody no redeptor. mediated direct	a-helical coiled-coil	-
	domain: trimerization rigger motif	
	Spacer domain	
to experimental infection		
with Gram-positive bacteria		
(L. monocytogenes, S. aureus,		
24 ^{S. pneumoniae})	AB.	
∠ ⊤	- W.	1

Thomas Areschoug

Bacterial mechanisms to evade phagocytosis/phagocytic killing

Targeting of inhibitory receptors

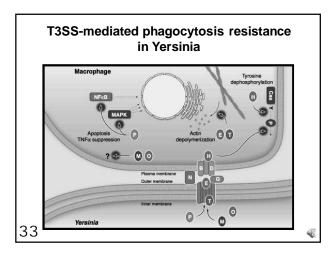



? Anhibition of inflammatory signals

HENRY How Bacterial Pathogens Avoid Phagocyte Killing

Thomas Areschoug

Human Siglec-5 Ig-domains Ig-domains Two ITIMs Expressed by neutrophils, monocytes, macrophages and basophils Four extracellular Ig-like domains Two cytosolic ITIMs (immunoreceptor tyrosine-based inhibitory motifs) Plays a role in: Cell-cell interactions



Thomas Areschoug

Bacterial mechanisms to evade phagocytosis/phagocytic killing

Type III secretion system

Type III secretion	ı system (T3SS)
T3SS • Found in many Gram-negative pathogens including Salmonella, Shigella, Yersinia, E. coli, Pseudomonas, Bordetella and Chlamydia	Host membrane
Often encoded by pathogenicity islands Highly conserved structure – structurally related to flagellum Direct translocation of effector proteins into host cell through a needle-like structuenth in the conserved of the pro	Bacterial plasma Poptificoglycan membrane Immer membrane Immer membrane Immer membrane Factors The type III secretion system
32	4

Thomas Areschoug

Bacterial mechanisms to evade phagocytosis/phagocytic killing		
Increased intracellular survival		
34	Œ	

M. tuberculosis –preventing phagolysosomal maturation

- Uptake and intracellular survival of Mtb in macrophages is an important step in the pathogenesis of tuberculosis
- Phagocytosis through CR3 and other receptors
- The main strategy of intracellular survival is to prevent phagosomal maturation by preventing fusion with late endosomes and the lysosome
- Inhibition of PI(3)P signalling and Ca²⁺ influx the main mechanisms

Flannagan RS, et al., Nat Rev Microbiol, 2009, 7:35

L. monocytogenes - escaping the phagosome · The cause of listeriosis Is internalized into both non-phagocytic and phagocytic ce needed for its propagation and dissemination Uptake by macrophages occurs through scavenger receptors Early after uptake by macrophages, L. monocytogenes secretes listeriolysin O (LLO), which creates holes in the phagosome · Inhibits the maturation of the phagosome because of loss of Ca2+ which is needed for fusion with endosomes/lysosomes Also express phospholipase C enzymes, which in concert with LLO cause the breakdown of the phagosome allowing the bacterium to escape Flannagan RS, et al., Nat Rev Microbiol, 2009, 7:35

Thomas Areschoug

Conclusions

- Bacterial pathogens have evolved diverse mechanisms to avoid phagocytosis
- Important steps in the molecular pathogenesis of bacterial disease
- Whereas most research has focused on evasion
 of complement-mediated phagocytosis or on how bacteria
 can survive inside phagocytes, less is known about
 mechanisms of how bacteria can evade non-opsonic
 receptors or how they target inhibitory receptors

37

	20			H E N STEW TAL	RY ART KS		
Ŀ	38						
