Calcium Regulation of Transcription in Plants
Professor Hillel Fromm (PhD)

Lecture topics

- Overview:
 - Origin and status of Ca\(^{2+}\) in plant cells
 - Ca\(^{2+}\) signals in the cytosol and in the nucleus
- How calcium signals regulate gene expression
- Roles of calcium-regulated transcription in plant defenses (biotic & abiotic stresses)
- Calcium as a modulator of hormonal function and plant growth:
 - key role in plant phenotypic plasticity

The screen versions of these slides have full details of copyright and acknowledgements
Calcium Regulation of Transcription in Plants
Professor Hillel Fromm (PhD)

Early cellular evolution
- On rate binding: 10^{-9}
- Strong binding
- High availability
- Limit of solubility: 10^{-5} M

1-10 mM Ca$^{2+}$

Sensors

Effectors

Ca$^{2+}$

200 nM

1-10 mM Ca$^{2+}$

Ca$^{2+}$ pump

Ca$^{2+}$ channel

Apoplast Ca$^{2+}$ 1-10 mM

Vacuole 1-10 mM Ca$^{2+}$

Cytosolic Ca$^{2+}$ ~ 100-200 nM

ATP ADP

1 mM

Ca$^{2+}$ pump

Ca$^{2+}$ channel

Nucleus ~ 50 nM

1 μM

Ca$^{2+}$ signals in the cell nucleus

Ca$^{2+}$ pump

Ca$^{2+}$ channel

Cyotosol

Nucleosol

Pauly et al. (2000)

Mcllvanan et al. (2003)

Jaiswal (2001); Williams (2006)

Kudla et al. (2010); Dodd et al. (2010);

Reddy et al. (2011); McAinsh & Pittman (2009)

The screen versions of these slides have full details of copyright and acknowledgements
Calcium Regulation of Transcription in Plants
Professor Hillel Fromm (PhD)

Cytoplasm Nucleoplasm
Ca²⁺-regulated gene expression

TFs cis-elements Transcriptome

Sensor

Genes

Pauly et al. (2000)
Bootman et al. (2009)

Ca²⁺/Calmodulin

Structures are derived from X-ray diffraction analysis of crystal structures;
Figures were prepared with the MOLMOL program; Bouché et al. (2005).

Plant calmodulins (CaMs) and calmodulin-like (CMLs) proteins

CaM

Anastrepsis TCH3

EF-hand Ca²⁺-binding site

Wheat CaM-1

Rice CaM11/Petunia CaM3

Arabidopsis TCH1

Snedden & Fromm, 1998

**Rodriguez-Concepcion et al. 1999

The Anastrepsis genome contains ~ 50 genes encoding CaMs and CalM-like (CML) proteins (McCormack et al. 2005), and ~ 250 different putative EF-hand calcium-binding proteins (Ray et al., 2002).
Plant proteins associated with calmodulin

- **Response to pathogens**
 - MLO protein (barley PM receptor)
- **DNA binding**
 - CAMTA
 - Myb2
 - WRKY10
 - GT1
- **Metabolism**
 - Glutamate decarboxylase (GAD)
 - NAD kinase
 - Catalase
 - Phospholipids
- **DNA binding domain purification**
 - IQ
 - DNABD
 - CMBD

CAMTA binding sites

- CAMTA binds to DNA through its DNA-binding domain.
- CAMTA proteins include CAMTA1-147 His-Tag DNA binding domain purification.
- CAMTA binding sites include G-box ABRE CA CGTG(T/G/C)
- Weak binding includes (CT) (CA/CCTG T/G/C)
- Strong binding includes ABRE-CG motif (A/G) CGCG(T/G/C)
- Probe includes CGCG and CATG.
Calcium Regulation of Transcription in Plants
Professor Hillel Fromm (PhD)

CM2: a CAMTA binding site in DREB1c (CBF2) promoters required for freezing tolerance

- DREB1 - drought responsive element binding factor 1 that binds to DRE (dehydration-responsive regulatory element)
- ABRE – ABA-response element (ACGT)

How Ca²⁺ regulates transcription: principal mechanisms

Ca²⁺ may function to activate or repress transcription depending on the TF, cis-elements, and physiological context.

Examples: Arabidopsis CaM7 and NIG1, human DREAM protein

- Z-box: ATACGTG
- G-box: CACGTG
- E-box: CANNTG

Ca²⁺-regulated TFs

Arabidopsis CaM7 functions as a Ca²⁺-regulated TF

Light-regulated genes

The screen versions of these slides have full details of copyright and acknowledgements
Calcium Regulation of Transcription in Plants

Professor Hillel Fromm (PhD)

Ca^2+/-CaM-regulated TFs

Examples of DNA binding sites of CaM-binding TFs in plants:

<table>
<thead>
<tr>
<th>TF</th>
<th>Binding Motif</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBP90</td>
<td>(C/A)CGCG</td>
</tr>
<tr>
<td>WRKY1</td>
<td>(C/T)TCG</td>
</tr>
<tr>
<td>MYC52</td>
<td>(C/T)ACG</td>
</tr>
<tr>
<td>NAC1</td>
<td>TTGCTT</td>
</tr>
<tr>
<td>ZBP1</td>
<td>(T/G)ACGT</td>
</tr>
<tr>
<td>MADS box</td>
<td>CGAG/GG</td>
</tr>
</tbody>
</table>

Most of these TFs are members of gene families; not all members of these families bind CaM, and their DNA-binding specificities may also differ from the above indicated sequences.

CAMTA3 is a negative regulator of defense responses; Ca^2+/-CaM binding to CAMTA3 relieves the repression of expression of defense genes.

Transcriptome analysis of *camta3* mutants

The screen versions of these slides have full details of copyright and acknowledgements.
Calcium Regulation of Transcription in Plants

Professor Hillel Fromm (PhD)

camta3 T-DNA insertion mutants have necrotic lesions on leaves

![Wild type, camta3-1, camta3-2 plants](image)

Galon et al. (2008)

camta3 mutants are hyper-resistant to fungal and bacteria pathogens

Botrytis cinerea

Pathogenic fungus

Pseudomonas syringae

Pathogenic bacteria

Galon et al. (2008)

Complex Ca^{2+}-regulated transcription networks in plant defenses

The Ca^{2+}-dependent calmodulin-binding CBP60g transcription factors is a positive regulator of salicylic acid mediated defense responses downstream of EDS1 (Wang et al. 2009; 2011)

![CBP60g diagram](image)

The screen versions of these slides have full details of copyright and acknowledgements
Calcium Regulation of Transcription in Plants
Professor Hillel Fromm (PhD)

Ca^{2+}-regulated TFs in abiotic stress responses

<table>
<thead>
<tr>
<th>Salt tolerance</th>
<th>Drought tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myb2</td>
<td>GTL1</td>
</tr>
<tr>
<td>(C/T)AAC(C/T)(G/A)</td>
<td></td>
</tr>
<tr>
<td>NIG</td>
<td></td>
</tr>
<tr>
<td>CANNYTG (E-box)</td>
<td></td>
</tr>
<tr>
<td>Transcription activators</td>
<td>Stomata number</td>
</tr>
<tr>
<td></td>
<td>Drought tolerance</td>
</tr>
</tbody>
</table>

Reddy et al. (2011)
Yu et al. (2010)

Ca^{2+}-regulated protein kinases and phosphatases modifying TFs

- CDPKs
- CCMKs
- CaMBK
- CIPKs
- CBLs
- TF

| CBL = Calcineurin B-like
| CIPK = CBL-interacting protein kinase

Reddy et al. (2010)
Kudla et al. (2010)
De Falco et al. (2010)

Ca^{2+}-dependent thermotolerance

Heat

Ca^{2+}-dependent phosphorylation of heat shock TF

Ca^{2+}-dependent de-phosphorylation of heat shock TF

Enhanced CAMTA1 expression

Galon et al. (2010a)

Reddy et al. (2011)

The screen versions of these slides have full details of copyright and acknowledgements
Calcium Regulation of Transcription in Plants
Professor Hillel Fromm (PhD)

Cis-elements mediating Ca\(^{2+}\)-regulated transcription

Bioinformatic analysis of promoters of Ca\(^{2+}\)-up-regulated genes

- Align ACE motifs
- Finds over-represented exact short sequences within the set of promoters, compared to whole genome regulatory domains
- RSA-tools: oligo-analysis motifs
- Finds short non-exact repetitive motifs within the set of promoters

\[\text{ABRE} = \text{ABA-responsive element} \]
\[\text{ABRE/T} = \text{Weak CAMTA binding sites} \]
\[\text{ABRE/CE} = \text{Strong CAMTA binding sites} \]

Experimental assessment of bioinformatic predictions

The screen versions of these slides have full details of copyright and acknowledgements
Cis-elements, transcription factors, and target genes in Ca²⁺ signaling pathways

<table>
<thead>
<tr>
<th>Motif</th>
<th>cis-element</th>
<th>TF</th>
<th>Target genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA²⁺ response element</td>
<td>[ATTG]</td>
<td>Ca²⁺-regulated TFs</td>
<td>RD29A, RD29B, RAB18, KAT1, KAT2, CHS, RBCS, ABF1-4 (bZIP); Ca²⁺-regulated kinas e (CDPK)</td>
</tr>
<tr>
<td>CAMTA-binding element</td>
<td>[ATTTG]</td>
<td>CAMTA, APX</td>
<td>Light-stress response genes, growth regulation, CAMTA-binding genes</td>
</tr>
<tr>
<td>Other</td>
<td>[TCTG]</td>
<td>Ca²⁺-regulated TFs</td>
<td>RD29A, RD29B, RAB18, KAT1, KAT2, CHS, RBCS, ABF1-4 (bZIP); Ca²⁺-regulated kinas e (CDPK)</td>
</tr>
</tbody>
</table>

Continued...cis-elements, TFs, and target genes in Ca²⁺ signaling pathways

<table>
<thead>
<tr>
<th>Motif</th>
<th>cis-element</th>
<th>TF</th>
<th>Target genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BARE1T retention site</td>
<td>[TATTIC]</td>
<td>CAMTA, APX</td>
<td>Light-stress response genes, growth regulation, CAMTA-binding genes</td>
</tr>
<tr>
<td>BARE1T retention site</td>
<td>[TATTIC]</td>
<td>CAMTA, APX</td>
<td>Light-stress response genes, growth regulation, CAMTA-binding genes</td>
</tr>
<tr>
<td>Site II</td>
<td>[ATGGGCCCT]</td>
<td>TCPs</td>
<td>Possibly TCPs, Ca²⁺-dependent mechanisms, Ca²⁺-regulated TFs</td>
</tr>
</tbody>
</table>

Ca²⁺-regulated transcription factors and plant growth

CAMTA1 expression profile is reminiscent of auxin-responsive genes.
Reverse-genetics approaches to elucidate the function and mode of operation of calcium-regulated TFs

![Diagram of T-DNA insertion mutants]

CAMTA1-SRDX: dominant negative transcriptional repressor

![Diagram of CAMTA1-SRDX construct]

Hyper-responsiveness to auxin of dark-grown hypocotyl elongation in *camta1* mutants and CAMTA1-repressor line

![Diagram of auxin response experiment]

The screen versions of these slides have full details of copyright and acknowledgements
Calcium Regulation of Transcription in Plants
Professor Hillel Fromm (PhD)

CAMTA1 gene expression responds to abiotic stresses

150mM NaCl

Galon et al. (2010a)

Complex interactions among CAMTA genes

Hormone-dependent growth responses

CAMTA1 CAMTA2 CAMTA3 CAMTA4 CAMTA5 CAMTA6

Abiotic stimuli Biotic stimuli

Senescence

Galon et al. (2010b)

Developmental plasticity model

Environmental cues (biotic and abiotic)

Ca²⁺ signaling

Ca²⁺-regulated TFs

"Biotic & abiotic stress responses"

Hormones

Developmental cues Intrinsic pathways

From cell proliferation to senescence

The screen versions of these slides have full details of copyright and acknowledgements
Calcium Regulation of Transcription in Plants
Professor Hillel Fromm (PhD)

Acknowledgements
- Dr. Aliza Finkler – Tel Aviv University
- Dr. Yael Galon – Tel Aviv University
- Ori Snir – Tel Aviv University
- Dikla Nachmiyas – Tel Aviv University
- Dr. Boaz Kaplan – Weizmann Institute of Science

Collaborations:
- Prof. Marc R. Knight – Durham University, UK
- Prof. Robert Fluhr – Weizmann Institute of Science
- Dr. Ester Feldmesser – Weizmann Institute of Science

Funding agencies:
- Israel Science Foundation
- ERA-NET Plant Genomics

References
- Kaplan B, Davydov O, Knight H, Galon Y, Knight MR, Fluhr R, Fromm H (2006) Rapid transcriptome changes induced by cytosolic Ca2+ transients reveal ABRE-related sequences as Ca2+-responsive cis-elements in plants; Plant Signal Behav 1: 17
- Galon Y, Snir O, Fromm H (2010b) How calmodulin-binding transcription activators (CAMTAs) mediate auxin responses; Plant Signal Behav 5: 1211
- Kushwaha S, Singh A, ChebbiDiaby A (2008) Cinnamoyl CoA plays an important role as transcriptional regulator in Arabidopsis seedling development; Plant Cell 20: 1747

The screen versions of these slides have full details of copyright and acknowledgements
Calcium Regulation of Transcription in Plants
Professor Hillel Fromm (PhD)

The screen versions of these slides have full details of copyright and acknowledgements