The TNF-TNFR superfamily: History

- Lymphotoxin and TNF first identified as products of lymphocytes and macrophages that mediate lysis of certain tumor cells (1969)
- cDNA is found to be related and part of a large gene family (1984)
- TNF found to be identical to cachectin, a protein that causes fever and wasting (1986)
- TNF blockade in mice found to ameliorate endotoxic shock (1988)
- TNF antagonists approved for clinical use in rheumatoid arthritis and inflammatory bowel disease (1998)

Genomics of the TNF/TNFR superfamily

- Massive expansion of ligand and receptor genes from drosophila to mammals
- Cysteine-repeat domains in receptors related to other receptor subtypes
- Intracellular signaling domains and downstream molecules more ancient
- Many linked clusters of ligand and receptor genes in both mouse and human suggest gene duplications
 - 1p36: 3 linked clusters TNFRSF4 (OX40) and TNFRSF18 (GITR); TNFRSF8 (CD30) and TNFRSF18 (TNFR2); TNFRSF9 (4-1BB) and TNFRSF25 (DR33); TNFRSF14 (HVEM)
 - 6p21 (in HLA locus): TNF (TNFSF2), LTα (TNFSF1), LTβ (TNFSF3)
 - 9p21: TRAIL Receptors (TNFRSF10A-D)
 - 19p13: TNFSF12 (TWEAK), TNFSF13 (APRIL)
 - Xq12: EDAR, XEDAR
TNF Superfamily Cytokines and Receptors in the Healthy and Diseased Immune System

Richard M. Siegel

The TNF-TNFR superfamily: Overview of main areas of action

- Lymph node and neo-lymphoid tissue development
- Inflammation – TNF (TNFR1), CD40L (CD40 on DC)
- Lymphocyte co-stimulation and homeostasis – both positive and negative effects
 - T cell co-stimulation: LIGHT, TNF(TNFR2), TL1A, OX40L, 4-1BBL, GITR-L
 - B cell co-stimulation: CD40L, Blys, APRIL
 - Lymphocyte cell death: FasL and TRAIL
- Cytotoxic effector molecule
- Non-immune effects: development and survival of osteoclasts, mammary gland cells, sweat gland cells

TNF-receptor superfamily signaling types

<table>
<thead>
<tr>
<th>Activating</th>
<th>Dual signaling</th>
<th>Death receptors</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAF</td>
<td>TRADD</td>
<td>FADD</td>
</tr>
</tbody>
</table>

- Lymphocyte co-stimulation
- Osteoclast activation
- Lymphoid organ formation
- CD30, CD40, 4-1BB
- RANK, RANK-L, etc.

- Mixed apoptosis & inflammation
- TNFR1, DR3

- Apoptosis
- FAS, TRAIL-Rs
- "Death Receptors"
TNF Superfamily Cytokines and Receptors in the Healthy and Diseased Immune System

Richard M. Siegel

TNF-SF structure-function

TNF ligands

- Type II transmembrane proteins
- B-jellyroll structure
- Trimeric, stabilized by internal residues
- Receptor binding regions highly variable
- Cleaved from the membrane by specific proteases

TNF-SF structure-function

TNF receptors: extracellular domains

- Cysteine Repeat Domains (CRDs) define TNFR-superfamily
- Scaffold of internal disulfide bonds stabilize structure
- Typical CRD contains two subdomains
- Variants can be classified into subgroups

TNF-SF structure-function

Ligand:Receptor binding

- Ligands crystallize in a 3:3 complex with receptors
- Ligand interdigitates between receptor subunits
- Ligand contact residues usually not at N-terminal
- Unliganded receptors may have a different quaternary arrangement
- TNF/TNFR and TRAIL/DR5 structures remarkably similar
TNF-SF structure-function
Death domain
- 6 alpha-helix knot - unique fold
- Shared by death receptors (Fas, TNFR1, TRAIL-receptors 1, 2, DR6, NGFR, EDAR)
- Bind other death-domain containing proteins such as FADD and TRADD
- Structurally related to downstream intracellular signaling proteins in the apoptosis pathway: DED and CARD

TNF-SF structure-function
TRAF domain
- Binds to a short related consensus sequences in non death-domain containing TNFRSF members:
 - PXQXT: TRAF 1, 2, 3, 5; QXPXEX: TRAF 6
 - TRAF 6 also interacts with TOLL/IL1R family members
- TRAF domain structure
 - is a mushroom-shaped trimer held together by a coiled-coil stalk
 - TRAF binds inside a trimer of receptor tails

Pre-association of Fas and other TNFR family members
- May explain inhibition of Fas and other TNFRSF receptors by some soluble splice variants and decoy receptors
- Preassociation may be regulated in different cell types; This could modulate sensitivity to receptor signaling
- Blocking pre-association of TNF-R family members may be a novel way to disrupt function
 - More receptor-specific
 - May avoid problems seen with anti-ligand antibodies (e.g., CD40L)
TNF Superfamily Cytokines and Receptors in the Healthy and Diseased Immune System
Richard M. Siegel

Use of the PLAD by other non-classical ligands for TNF-receptors

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Function</th>
<th>TNF family</th>
<th>Interaction Domains</th>
<th>Net effect on TNFR signaling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-ligand association</td>
<td>Homotypic receptor interactions</td>
<td>TNFR1, TNFR2, TRAIL receptors</td>
<td>CRD1 (PLAD)</td>
<td>Positive with full-length receptors, negative with decoy soluble receptor</td>
</tr>
<tr>
<td>BTLA</td>
<td>Activates BTLA</td>
<td>HVEM</td>
<td>CRD1 (PLAD)</td>
<td>Neutral</td>
</tr>
<tr>
<td>HSV glycoprotein-D</td>
<td>Activates</td>
<td>HVEM</td>
<td>CRD1 (PLAD)</td>
<td>Neutral</td>
</tr>
<tr>
<td>13</td>
<td>BTLA HVEM binding activates BTLA signaling</td>
<td>TNFR2-TNFR1</td>
<td>?</td>
<td>Negative</td>
</tr>
</tbody>
</table>

Apoptosis triggered by death domain-containing TNF-SF receptors through recruitment of a death-inducing signaling complex (DISC)

1. Unbound receptors
2. Ligand-bound receptors (Receptor clustering)
3. Activated receptor signaling complex
4. Release of active caspase into cytoplasm

FAS-FADD crystal structure reveals a complex containing at least 5 subunits of each death domain

Wang et al., Nature Structural Biology, 2010
TNF Superfamily Cytokines and Receptors in the Healthy and Diseased Immune System
Richard M. Siegel

16

Fas engagement induces rapid receptor clustering in living cells

Pre-tx Anti-Fas (15 min)

- Receptor Clustering requires the death domain
- Receptor Clustering is upstream of caspase activation

17

TNF-SF receptors without a death domains trigger diverse gene expression programs through TNF-receptor associated adapter proteins: TRAF (s)

1. Unbound receptor
2. Bound receptor with signaling complex

TRAF-binding sequences

TRAF (s) (TNF-receptor associated proteins)

Differentiation
Inflammation
Organogenesis

TRAF-binding sequences

18

Dual signaling by TNF receptors: Sequential formation of two signaling complexes

New gene synthesis
Cell survival
Inflammation

TNF-R1

FADD
Caspase-8

Complex I

> 2 hrs

Complex II

New gene synthesis
Cell survival
Inflammation

c-FLIP

Cell death

Micheau and Tschopp, Cell 2003
TNF-SF signaling:
Major regulation by dynamic expression of ligands

- Expression of TNF ligands is more highly regulated than receptors
- TNF secretion can be directly triggered by pathogen-derived structures through Toll-like receptors (TLR\(\beta\))
- Cytokine & Integrin signals can amplify and independently activate TNF expression
- TNF transcription activated by NF-\(\kappa\)B and MAP-kinase
- mRNA destabilization important in regulating protein levels
- TNF secretion mediated by TACE, a cysteine metalloproteinase
- Some functions may depend on surface vs. secreted ligand

TNF-SF functions (1)
Lymph node development

- LTa, LTb – produced by lymphoid-tissue inducer cell (LTi);
 Acts on non BM derived lymphoid-tissue organizer (LTo)
 to upregulate adhesion molecules
- RANK or RANK-L essential for LN but not spleen GC or Peyer \(\lambda\) patches
- Ectopic expression of LTb promotes [tertiary] lymphoid tissue at sites of inflammation

TNF-SF functions (2)
TNF: enhancement of innate immunity

- TNF release or injection mediates septic shock and chronic wasting syndromes
- Stabilizing TNF mRNA reproduces wasting syndrome dependent on TNFR1
- TNF or TNFR1-/- mice are deficient in innate immune responses to bacteria but resistant to LPS-mediated endotoxic shock;
 Inflammatory pathology mediated by TNF overexpression is independent of T and B cells
- Expression of TNF1 by non hematopoietic cells also may be important (Hepatocytes, Fibroblasts)
- Same pathways that mediate innate immune protection also mediate immunopathology
- TNFR2 - more important in T cell co-stimulation
TNF-SF functions (3)

- Germinal center formation and B cell class switching is dependent on interactions between CD40L (CD154) on T cells and CD40 on B cells
- BlyS (BAFF) additional survival and differentiation factor for germinal center B cells expressing the BAFF-receptor; BlyS also binds TACI and BCMA
- Overexpression of BlyS can induce systemic autoimmunity and BlyS blockade can inhibit disease
- Anti-BlyS antibodies (Belimumab) approved for the treatment of SLE – reduces autoantibody and disease indices

Dillon et al., Nature Reviews Rheum 2006

TNF-SF functions (4)

- HVEM, GITR, TNFR2, CD30, OX40, CD27, DR3 and 4-1BB can co-stimulate antigen-induced activation of T cells
- Deficiency of each co-stimulatory TNF-receptor has different phenotype in knockout mice
- Differential effects on T cell subsets
- GITR may have a special role in reversing suppression mediated by CD4(+)CD25(+) Treg
- May be good therapeutic targets for T cell mediated autoimmune diseases

TNFR family members in T cell expansion and contraction

- Naive
- Effector
- Memory
- Activation HVEM
- Clonal expansion CD27
- Post-activation survival OX40, 4-1BB, CD30
- Post-activation cell death: not known to be dependent on exogenous ligands
- Re-stimulation induced death FAS
- Effector cell accumulation in target tissue DR3

Adapted from Croft, Nature Reviews Immunology 2003
TNF Superfamily Cytokines and Receptors in the Healthy and Diseased Immune System

Richard M. Siegel

TL1A-DR3 interactions critical for effector T cells at the site of inflammation

- Both Th2 and Th1/Th17 driven autoimmune disease models depend on DR3
- DR3 required on T cells for local effector T cell expansion and effector responses
- Systemic T cell priming or migration not significantly affected
- OX40 deficient mice protected from lung hypersensitivity and EAE but systemic responses affected as well

Meylan et al., Immunity 2008

TNF SF function: Negative regulation through apoptosis induction: FasL-Fas interactions

- FasL-Fas interactions lead to apoptosis induction
- Memory cell generation and maintenance
- Effector cell death

Multiple signaling pathways can lead to programmed cell death

- Extrinsic pathway: FasL-Fas
- Intrinsic pathway: DNA damage, Cellular stress, Growth factor deprivation

The screen versions of these slides have full details of copyright and acknowledgements
TNF Superfamily Cytokines and Receptors in the Healthy and Diseased Immune System
Richard M. Siegel

TNF-SF function:

Osteoclast development and activation

- Synergy between TNF and RANK-L
- Osteopetrosis in RANK or RANK-L deficient mice
- In experimental arthritis models, RANK-L and TNF expressed by activated CD4 cells can cause bone erosion (blockable by soluble receptors or anti-cytokine antibodies)
- Anti-RANK-L antibodies (Denosumab) approved for therapy in osteoporosis and other diseases

Molecular mechanisms of genetic diseases involving TNF-SF & TNFR-SF

- X-linked Hyper-IgM syndrome (HIGM-1): Loss of function mutations in CD40L gene; Mutations leading to loss of protein expression and mutations in the extracellular region of CD40L have been reported
- Autoimmune Lymphoproliferative Syndrome (ALPS): Heterozygous, most often dominant negative mutations in Fas
- TRAPS: Heterozygous mutations in the extracellular domain of TNFR1: due to decreased shedding of soluble TNFR1 and receptor misfolding leading to TNF-independent intracellular signaling by mutant TNFR1
- Ectodermal dysplasias: Can result from recessive or dominant mutations in EDA/EDAR/XEDAR; All result in dysfunctional ligand/receptor interactions
- Familial expansile osteolysis: Heterozygous mutations in the signal peptide of RANK, apparently leading to spontaneous activation of receptor signaling

ALPS - Autoimmune Lymphoproliferative Syndrome

Genetic defects in the Fas pathway

- **Clinical:** Lymphadenopathy, splenomegaly and accumulation of CD4-CD8- T cells; Initial presentation: infancy to 5 yrs
- **Lab:** Hypergammaglobulinemia and autoantibodies; Primarily hematopoietic antibody-mediated autoimmune disease 15-fold increased incidence of lymphomas 15-48 years after initial ALPS symptoms
- **85%** of patients harbor heterozygous mutations in the gene coding for Fas/CD95
Fas death domain mutants interfere with recruitment of FADD and formation of the DISC

Extracellular Fas mutations inhibit signaling through pre-association with wild-type chains

Therapeutic uses of TNF-SF blockade in inflammatory diseases
Other anti-inflammatory agents that target TNF-SF action

<table>
<thead>
<tr>
<th>Agent</th>
<th>Action</th>
<th>In Use</th>
<th>Investigational</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pentoxysilnine</td>
<td>Inhibits TNF synthesis</td>
<td>Multiple</td>
<td>Sarcoidosis, others</td>
</tr>
<tr>
<td>Thalidomide</td>
<td>Block NF-κB activation</td>
<td>Multiple</td>
<td>ESRD, refractory arthritis</td>
</tr>
<tr>
<td>Pentoxysilnine</td>
<td>Inhibits TNF synthesis</td>
<td>Multiple</td>
<td>Sarcoidosis, others</td>
</tr>
<tr>
<td>Salicylates</td>
<td>Block NF-κB activation</td>
<td>Inflammatory Arthritis</td>
<td></td>
</tr>
<tr>
<td>Prostaglandin inhibitors</td>
<td>Block NF-κB activation</td>
<td>Inflammatory Arthritis</td>
<td></td>
</tr>
<tr>
<td>Glucocorticoids</td>
<td>Block NF-κB transactivation</td>
<td>Multiple</td>
<td></td>
</tr>
</tbody>
</table>

Review papers for further reading

2. Croft, M (2003) "Costimulatory members of the TNFR family: keys to effective T cell immunity?" Nature Reviews Immunology 3: 609-620

Online Chart of TNF family Cytokines and Receptors
http://www.niams.nih.gov/Research/Ongoing_Research/Branch_Lab/Autoimmunity/tnfchart.htm

The screen versions of these slides have full details of copyright and acknowledgements