Objectives

- History of neurorehabilitation
 - The influence of the military in its creation/development
- Blast injuries
 - Incidence
 - Signs/Symptoms
 - TBI versus PTSD
- Neurorehabilitation, non-pharmacological management
- Neurorehabilitation, pharmacological management

Neurotrauma & rehabilitation: a historical perspective

- 1917: MAJ Frank Granger, USA, MC: Director of physiotherapy service of the reconstruction division
 - Units in 35 general hospitals and 18 base hospitals
 - American College of Radiology & Physiotherapy
- 1938: Radiology & Physiotherapy separated
 - Physiotherapy physicians – Society for Physical Therapy Physicians
 - Dr. John Coulter (Northwestern Univ), Dr. Frank Krusen (Mayo Clinic), Dr. Walter Zeiter (Cleveland Clinic)
- 1939: Dr. Krusen ‘Physiatrist’
Neurotrauma & rehabilitation: a historical perspective (2)

- 1939-1941: Rapid development of Physiatry, primarily because of military needs
 - Army physicians sent to Mayo Clinic to train under Dr. Krusen
- 1943: LTC Howard A. Rusk, USA, MC (WWII) established rehabilitation program in the U.S. Army Air Corps
 - Recognized the importance of early ambulation and physical activity rather than prolonged bedrest
 - 7 convalescent hospitals

Neurotrauma & rehabilitation: a historical perspective (3)

- 1945: AMA established a Physical Medicine & Rehabilitation section
- 1947: American Board of Physical Medicine (ABPM) established
- 1949: Changed to American Board of Physical Medicine & Rehabilitation (ABPM&R)
- 1954: Vocational Rehabilitation Act
- 1990: Americans with Disabilities Act
- 1990: National Center for Medical Rehabilitation at the National Institutes of Health
 - 1992: First NCMRR grants
 - Its goal is to support rehabilitation, health, and well-being of individuals with physical disabilities

Neurotrauma & rehabilitation: a historical perspective (4)

Brain injury in...
- Vietnam War: 12-14%
- Persian Gulf War: 8%
- OIF/OND/OEF*: 22%

*OIF = Operation Iraqi Freedom
OND = Operation New Dawn
OEF = Operation Enduring Freedom
Rehabilitation of Military
Related Neurotrauma
Michael R. Yochelson

US & UK casualties in Iraq & Afghanistan
- US Statistics:
 - Iraq (OIF) March 19, 2003-August 31, 2010
 - Fatalities: 4,421 US Troops
 - Wounded: 31,921 US Troops
 - Afghanistan (OEF)
 Oct 2001-Sept 2011
 - Fatalities: 1,749 US Troops
 - Wounded: 13,669
- Approximately 8% of US Troops leave theater with a diagnosis of TBI

- UK Statistics:
 - Iraq (Op TELIC) January 1, 2003-July 31, 2009
 - Fatalities: 179 UK Military & Civilian
 - Wounded: 537 UK Military & Civilian
 - Afghanistan (Op HERRICK) October 1, 2001-September 15, 2011
 - Fatalities: 381 UK Military & Civilian
 - Wounded: 2,326 UK Military & Civilian

Accessed on September 6, 2011
http://www.mod.uk/DefenceInternet/FactSheets/
Accessed on October 2, 2011

Blast related TBI: incidence
- Approximately 20% of all deployments
- Approximately 28% of all service members medically evacuated out of Iraq/Afghanistan
- Approximately 88% of all service members medically evacuated to WRAMC
- Up to 97% of injuries are blast related (data from 1 unit)
 - 53% involved head & neck
- The number of Iraqi and Afghan civilian casualties is even greater
- Increasing number of civilian blast injuries worldwide

Blast injuries: incidence
- Increase in neurological symptoms in blast versus non-blast injuries
 - 1303 victims of explosive munitions:
 - 51% suffered primary blast injury
 - 30% blast injured = persistent neurological symptoms
 - 4% non-blast injured = persistent neurological symptoms

The screen versions of these slides have full details of copyright and acknowledgements
Blast injuries: incidence (2)

- Medical Characteristics (incidence)
 - Pulmonary embolism: 28 patients (6.8%)
 - CSF leak: 35 patients (8.6%)
 - Early seizure: 50 patients (12.3%)
 - Systemic infection: 188 patients (46.1%)
 - CSF infection: 37 patients (9.1%)
 - Spinal cord/column injury: 40 patients (9.8%)
 - Vascular injury: 111 patients (27%)

Blast injuries: incidence (3)

- Post-traumatic aneurysms 35%
- Post-traumatic vasospasm 47%

Blast injuries: incidence (4)

- Blast induced TBI is the “signature wound” of the current conflicts in the Middle East
- It is estimated that 20% of deployed service members sustain at least a mild TBI secondary to blast
- TBI versus PTSD
Rehabilitation of Military Related Neurotrauma
Michael R. Yochelson

Signs & symptoms

• Major injury/trauma
 ▪ Penetrating wounds
 – Amputations
 – Neurovascular damage (peripheral nerve injury)
 ▪ Internal organ injury (chest, lung, abdomen); shock
 ▪ Fractures
 ▪ Prolonged loss of consciousness; post-traumatic amnesia
 ▪ Tetraplegia, paraplegia, hemiplegia
 ▪ Ocular injury
 ▪ Hearing loss; tympanic membrane rupture

Signs & symptoms (2)

• Minor injury
 ▪ No (or brief) loss of consciousness
 ▪ Pain
 ▪ Headaches
 ▪ Dizziness; vertigo; imbalance
 ▪ Weakness (mild or peripheral nerve distribution)
 ▪ Visual changes (especially blurry vision; difficulty focusing)
 ▪ Nausea/vomiting
 ▪ Fatigue; sleep disturbances
 ▪ Cognitive impairment
 ▪ Changes in behavior/personality
 ▪ Nightmares; flashbacks

TBI vs. PTSD

• High degree over overlap in persons exposed to blast/bombings
 ▪ The environment/situation is one in which one could experience PTSD even without TBI
 ▪ Symptom overlap
 – Somatic symptoms
 ▪ Nausea, dizziness/vertigo, fatigue, insomnia
 – Emotional
 ▪ Anxiety, depression, irritability
 – Cognitive
 ▪ Attention, memory, processing speed
Rehabilitation of Military Related Neurotrauma
Michael R. Yochelson

TBI vs. PTSD (2)

- Lack of overlap
 - Abnormal neuro-imaging
 - Headaches
 - Seizures
 - Focal neurological deficits

TBI vs. PTSD (3)

- Post-concussive symptoms
 - Most resolve within 3 months
 - Prolonged Post-Concussion Syndrome
 symptoms often are associated with PTSD
 - Also consider other psychological issues (e.g. depression),
 legal, secondary gain and undiagnosed neurological injury
 (e.g. diffuse axonal injury)

Neurorehabilitation: non-pharmacological

- Amputations
 - Weakness: physical therapy/occupational therapy
 for strengthening, range of motion/stretching, positioning,
 prevention of contractures, edema control
 - Pain: tapping, massage
- Peripheral nerve/muscle damage
 - Weakness: physical therapy/occupational therapy
 for strengthening, gross/fine motor control
 - Splinting
 - Functional electrical stimulation (FES)
Rehabilitation of Military Related Neurotrauma
Michael R. Yochelson

19

Bioness® H-200 upper extremity functional electrical stimulation for hand paralysis

Walkaide® lower extremity functional electrical stimulation for foot drop

20

Neurorehabilitation: non-pharmacological

• Traumatic Brain Injury/Spinal Cord Injury
 • Inpatient rehabilitation
 – Physical therapy
 • Strengthening, range of motion, balance, gait
 • Assistive devices (cane, walker, wheelchair etc.)
 • Body weight support gait/balance (e.g. Zero-G, Alter-G)
 • Casting
 • Spasticity management
 • Pain management; modalities (heat, ultrasound, e-stim)

21

Neurorehabilitation: non-pharmacological

• New technology
Rehabilitation of Military Related Neurotrauma
Michael R. Yochelson

Neurorehabilitation: non-pharmacological

- Occupational therapy
 - Upper extremity strengthening, range of motion, fine/gross motor skills
 - Splinting
 - Adaptive equipment (reachers, transfer devices, flatware handles, pen/pencil grips, elastic shoeaces, shoe horns, unilateral buttoning, tub bench etc.)
 - Pain management; modalities (paraffin; contrast baths; e-stim)
- Vocational/educational skills
- Cognitive assessment/therapy
- Vision assessment/therapy
- Driving evaluations

Neurorehabilitation: non-pharmacological

- Speech Language pathology
 - Swallowing evaluation/treatment
 - Speech (dysarthria) therapies
 - Language (aphasia) therapies
 - Cognitive therapies

Neurorehabilitation: non-pharmacological

- Neuropsychology
 - Capacity evaluations
 - Cognitive remediation
 - Emotional assessments & support

The screen versions of these slides have full details of copyright and acknowledgements
Neurorehabilitation: non-pharmacological
• Therapeutic recreation
 • Avocational activities
 – Community activities (public transportation)
 – Leisure activities
 – Sports

Neurorehabilitation: non-pharmacological
• Medical/Nursing Issues
 • Respiratory care
 – Monitoring respiratory status, tracheostomy management
 • Skin care
 – Turning, inspection, wound management
 • Neurogenic bladder
 – Timing
 – Catheterization
 • Neurogenic bowel
 – Timing
 – Suppositories
 – Digital stimulation

Neurorehabilitation: non-pharmacological
• Medical/neuropsychological issues
 • Agitation
 – Environmental
 • Structured unit
 • Quiet; reduce stimulation
 • Natural light; non-fluorescent light
 • Aroma therapy
 • Staff education
 • Mood disorders
 – Psychotherapy/hypnotherapy
 – Electroconvulsive therapy (ECT)
Neurorehabilitation: non-pharmacological
- Medical issues
 - Sleep dysfunction
 - Environment, including lighting
 - Monitor sleep (sleep log, actigraph)
 - Sleep hygiene
 - Assess for sleep apnea

Neurorehabilitation: pharmacological
- Pain
 - Non-narcotic pain medications
 - Anticonvulsants
 - Tricyclic antidepressants
 - Alpha agonist
 - Narcotic pain medications
 - Intrathecal pumps
 - Nerve blocks
 - Epidural steroid injections

Neurorehabilitation: pharmacological
- Agitation
 - Beta blockers
 - Mood stabilizers
 - Anticonvulsants
 - Antidepressants
 - Atypical antipsychotics
 - Antipsychotics/benzodiazepines
Neurorehabilitation: pharmacological

- Mood disorders
 - Antidepressants
 - SSRI
 - Bupropion
 - SNRI
 - Anticonvulsants
 - Tetracyclic antidepressants

Neurorehabilitation: pharmacological

- Headaches
 - Abortive
 - Non-steroidal anti-inflammatory drugs (NSAIDs)
 - Acetaminophen
 - Narcotics, short acting
 - Triptans
 - Prophylaxis
 - Anticonvulsants
 - Beta blockers
 - Calcium channel blockers
 - Botulinum toxin injections
 - Tricyclic antidepressants

Neurorehabilitation: pharmacological

- Seizure management
 - Prophylactic x 7 days after TBI
 - Phenytoin
 - Levetiracetam
 - Long-term use
 - Minimize side effects
 - Ease of use/compliance
 - Co-morbidity treatment
Neurorehabilitation: pharmacological

- Sleep dysfunction
 - Melatonin
 - Ramelteon (melatonin receptor agonist)
 - Tetracyclic antidepressants
 - Trazodone, mirtazapine
 - Tricyclic antidepressants
 - Other antidepressants if depression related insomnia
 - Antipsychotics
 - Anxiolytics (rare)
 - Other sleep aids (e.g. eszopiclone, zaliplon, zolpidem)

Neurorehabilitation: pharmacological

- Fatigue
 - Neurostimulants
 - Modafinil, armodafinil
 - Caffeine

Neurorehabilitation: pharmacological

- Cognitive dysfunction
 - Attention
 - Neurostimulants
 - Methylphenidate
 - Dextroamphetamine/Amphetamine
 - Atomoxetine
 - Modafinil/armodafinil
 - Selective serotonin reuptake inhibitors (SSRI)
 - Memory
 - Cholinesterase inhibitors
Neurorehabilitation: pharmacological

- Spasticity
 - Baclofen (oral and intrathecal)
 - Tizanidine
 - Dantrium
 - Benzodiazepines (with caution)
 - Botulinum toxins

37

Neurorehabilitation: pharmacological

- Post-TBI or Post-stroke Parkinsonism
 - Carbidopa-levodopa
 - Amantadine
 - Bromocriptine

38

Neurorehabilitation: pharmacological

- Arousal
 - Amantadine
 - Dopamine agonists
 - Neurostimulants
 - Avoidance of sedating medications

39
Rehabilitation of Military Related Neurotrauma
Michael R. Yochelson

Neurorehabilitation: pharmacological

- Neurogenic bladder
 - Anticholinergic agents (detrussor hyperreflexia)
 - Propantheline, dicyclomine, hyoscyamine
 - Antispasmodic drugs
 - Oxybutinin, tolteradine, solifenacin, darifenacin
 - Tricyclic antidepressants
 - Imipramine, amitriptyline

Monitor for UTI, including signs/symptoms of autonomic dysreflexia in SCI

Neurorehabilitation: pharmacological

- Neurogenic bowel
 - Stool softeners
 - Laxatives
 - Electrolyte solution (e.g. polyethylene glycol)
 - Oral
 - Suppositories
 - Enemas

Thank you!

michael.r.yochelson@medstar.net
Rehabilitation of Military Related Neurotrauma
Michael R. Yochelson

References

- Armonda RA, Bell RS, Vo AH et al., Wartime Traumatic Cardiac Vasospasm: Recent Review of Combat Casualties, Neurosurgery 2008; 59: 1215-1225
- Ciccarelli KD, Commentary: The Validity of Cognitive Rehabilitation, J Head Trauma Rehabil. 1996; 14: 316-321
- Dombovy ML, Traumatic Brain Injury, Continuum: Neurorehabilitation 2011; 17: 584-605
- Hart T, Dijkers M, Fraser R et al., Vocational Services for Traumatic Brain Injury: Treatment Definition and Diversity within Model Systems of Care, J Head Trauma Rehabil 2006; 21: 467-482
- Hoge, CW, Interventions for War-Related Posttraumatic Stress Disorder [editorial], JAMA 2011; 306: 549-551
- LiVecchi MA, Spinal Cord Injury, Continuum: Neurorehabilitation 2011; 17: 568-583
- Rechis RG and Ruif RL, Rehabilitation in the Patient with Mild Traumatic Brain Injury, Continuum: Traumatic Brain Injury 2010; 18: 126-149
- Schneider WN and Wong TM, Cognitive and Behavioral Disorders in Neurorehabilitation, Continuum: Neurorehabilitation 2011; 17: 462-470
- Tanielian T and Jaycox LH (eds.), Invisible Wounds of War: Psychological and Cognitive Injuries, Their Consequences, and Services to Assist Recovery 2008; RAND Corporation: Santa Monica, CA
- Tanielian T and Jaycox LH (eds.), Invisible Wounds of War: Psychological and Cognitive Injuries, Their Consequences, and Services to Assist Recovery 2008; RAND Corporation: Santa Monica, CA