

Prof. Dieter Schmidt

1

2

Pharmacological Treatment

Professor Dieter Schmidt

Emeritus Professor of Neurology, Free University of Berlin Currently Head, Epilepsy Research Group Berlin Founding Editor of Epilepsy Research Dbschmidt@t-online.de

Outline

 The art of pharmacological epilepsy treatment includes matching the profile of the individual patient with profile of the individual antiepileptic drug (AED);

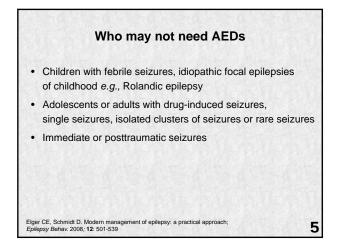
1. How and when to start AEDs? Which AED?

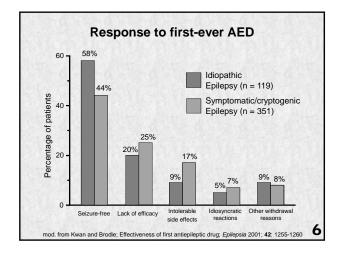
2. How to optimize the benefit/risk balance of pharmacological treatment for your patient?

3. How and when to stop AEDs?

4. Outlook?

Why treat epilepsy?


- · Make sure it is epilepsy and the patient wants to be treated
- AEDs offer symptomatic seizure control, *i.e.*, a lower risk of seizure recurrence
- · Ideally: no seizures, no side effects
- Realistically: 70% seizure free, 50% no side effect
- AEDs allow most patients to live a normal life


3

7

Which AED?

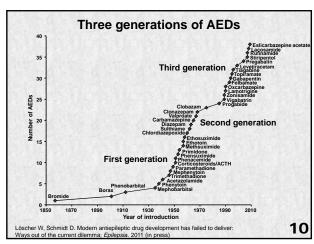
- Match the need of the individual patient (seizure type, gender, comorbidity, past treatment)
- The best tolerated AED for the seizure type: no side effects, no drug interaction, no monitoring = no unnecessary interference
- · Start low, go slow
- Consider: in 30% AEDs are for life

Elger CE, Schmidt D. Modern management of epilepsy: a practical approach; Epilepsy Behav. 2008; 12: 501-539

· AEDs allow most patients to live a normal life

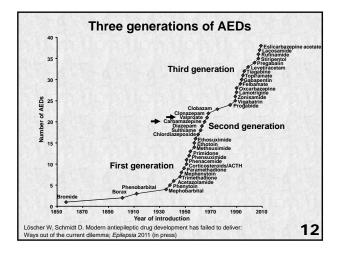
 Choice of AED: considerations

 No detrimental drug interaction

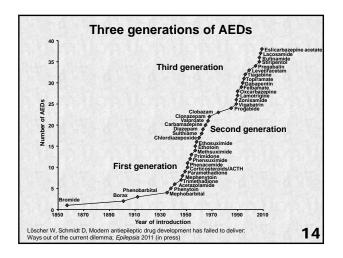

 Inderstand

 Inderstand

-	Anticonvulsant effect in rodent models		in rodent models	Clinical efficacy (seizure suppression)		
Drug	MES*	s.c. PTZ**	Amygkindling***	Partial	Generalia	zed seizures
Predominant Na+/Ca2+ activity				seizures	Convulsive	Nonconvulsiv
Phenytoin	+	NE	+	+	+	NE
Carbamazepine	+	NE	+	+	+	NE
Oxcarbazepine	+	NE	+	+	+	NE
Lamotrigine	+	±	+	+	+	+
Zonisamide	+	±	+	+	+	+
Predominant Ca ²⁺ activity			C 5 1 2 3 1 2 3 1 2 3		1.25	2000
Ethosuximide	NE	+	NE	NE	NE	+
GABA systems	* 116-27	-	and the second second	1000	1000	- there
Benzodiazepines	+	+	+	+	+	+
Vigabatrin	NE	+	+	+	+	NE
Tiagabine	NE	+	+	+	+	NE
Mixed		5	Contraction (Contraction)			-
Valproate	+	+	+	+	+	+
Felbamate	+	+	+	+	+	+
Topiramate	+	NE	+	+	+	+
Phenobarbital	+	+	+	+	+	±
Novel targets					8 4 4 1 3 5 3	10.00
Gabapentin	±	±		+	+	NE
Pregabalin	+	NE	+	+	+	NE
Levetiracetam	NE	NE	+	+	+	±
Lacosamide	+	NE	+	+	Service of	
Retigabine	+	+	+	+		



AED	PRO	CON
Phenobarbital / Primidone	Long experience, intravenous, broad efficacy, low cost ¹	Interaction, sedation, depression, rheumatism, less effective than Carbamazepine ²
Phenytoin	Long experience, intravenous, non-sedative, well tolerated in the elderly ¹	Interaction, rash, cerebellar toxicity, non-linear kinetics ¹

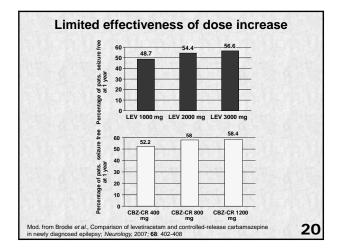


AED	PRO	CON
Carbamazepine	Long experience, in general well tolerated, unsurpassed efficacy ¹	Interactions, not well tolerated in children and elderly, rash, aplastic anemia ³
Valproate	Long experience, intravenous use, broad efficacy, unsurpassed efficacy for idiopathic generalized epilepsy ¹	Weight gain, liver failure high teratogenicity, interaction ³ , VPA less effective than CBZ for cps ²

AED	PRO	CON
Gabapentin	Well tolerated, safe, no interaction, no rash	T.i.d., weaker efficacy vs. CBZ ²
Lamotrigine	Well tolerated, safe, mood- stabilizer (Grumpy Old Men!)	Interaction, slow titration
Levetiracetam	Well tolerated, safe, few interactions, no idiosyncratic reaction	Psychiatric adverse effects
Oxcarbazepine	Well tolerated, safe, better tolerated than Carbamazepine, particularly in children	Interaction, hyponatremia (elderly, comedication)

AED	PRO	CON
Topiramate	Generally well tolerated, safe, no interactions below 200 mg/d, broad efficacy	Cognitive side effects, weight loss, depression, rare nephrolithiasis, metabolic acidosis
Pregabalin	Generally well tolerated, safe analgesic action	Weight gain, edema, no monotherapy
Tiagabine	Well tolerated, safe no interactions	Non-convulsive status epilepticus, depression, no monotherapy

Classification	Recommended	Other
Focal, including tonic clonic seizures	Gabapentin, Lamotrigine, Levetiracetam, Oxcarbazepine	Valproate, Carbamazepine, Clobazam, Phenytoin, Pregabalin, Topiramate, Vigabatrin, <i>etc.</i>
Unclear, if focal or generalized seizure	Valproate, Lamotrigine, Levetiracetam, Clobazam	Phenobarbital Topiramate, Zonisamide, <i>etc</i> .

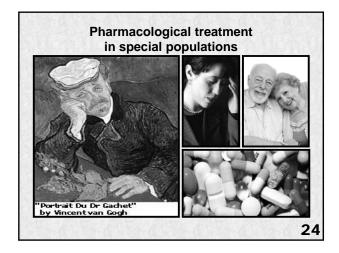

Classification	Recommended	Other
Generalized, including tonic- clonic seizures	Valproate, Levetiracetam, Lamotrigine	Phenobarbital Carbamazepine, Clobazam? Topiramate <i>etc.</i>
Absence seizures only	Valproate, Ethosuximide Clobazam	Levetiracetam Lamotrigine, Phenobarbita Topiramate, Zonisamide, <i>etc.</i>
Myoclonic seizures	Valproate, Clobazam	Levetiracetam Phenobarbital Lamotrigine Topiramate, Zonisamide, <i>etc.</i>

AED	Starting dose mg/d (maintenance)	Titration in weeks	Major elimination /metabolic pathways	CYP- P450 inducer	Enzyme
Clobazam	10 (10)	0.2	Hepatic	No	No
Gabapentin/Pregabalin	300 (2400)/75(300)	1	Renal	No	No
Vigabatrin	500 (3000)	1.5	Renal	No	No
Carbamazepine	200 (800)	2	Hepatic	Yes	No
Oxcarbazepine	150 (1200)	2	Hepatic	Yes	Yes
Phenytoin	100 (300)	2	Hepatic	Yes	No
Valproate	600 (1200)	2	Hepatic	No	Yes
Lacosamide	50 (400)	2	Hepatic	No	No
Eslicarbazepine	400 (800)	2	Hepatic	Yes	No
Zonisamide	25 (300)	3	Hepatic	No	No
Levetiracetam	500 (2000)	4	Renal	No	No
Felbamate	300 (3600)	4	Hepatic	no	No
Tiagabine	6 (35)	7	Hepatic	No	No
Ethosuximide	250 (1000)	8	Hepatic	No	No
Phenobarbital	50 (200)	8	Hepatic	Yes	No
Bromide	300 (2100)	8	Hepatic	No	No
Primidone	125 (250)	8	Hepatic	Yes	Yes
Topiramate	25 (200)	9	Hepatic	Yes*	Yes
Lamotrigine	25 (300)	10	Hepatic	No	No

Which dose is optimal?

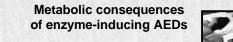
- · The optimal dose is the lowest dose (at whatever serum concentration) that achieves seizure freedom and at the lowest possible rate of adverse effects1
- · While young children may need higher mg/kg dose or more frequent dosing because they metabolize AEDs more rapidly than adults, the elderly often require lower mg/kg dose as they metabolize and eliminate slower and are more responsive to drug effects^{1,2}
- Avoid overtreatment = unnecessary and excessive drug load that leads to a suboptimal risk-benefit balance¹
- Schmidt D. Strategies to prevent overtreatment with antiepileptic drugs in patients with epilepsy; Epilepsy Res. 2002; 52: 61-69
 Brodie et al., Epilepsy in later life; Lancet Neurol. 2009; 8: 1019-1030

21

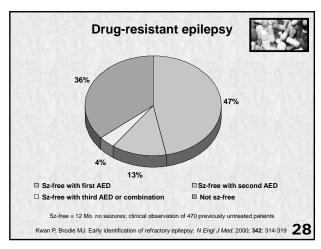


	Carbamazepine	Gabapentin	Lamotrigine	Oxcarbazepine	Topiramate	Total
Number randomised	378	377	378	210	378	1721
fotal number (%) of patients with at least one adverse event	183(48%)	178 (47%)	169 (45%)	100 (48%)	200 (53%)	830 (48%)
Tiredness/drowsiness/fatigue/lethargy	48[36]	46[34]	31 [17]	22[16]	43 [33]	190[136]
Repression	14[8]	18[10]	20[13]	7[5]	29 [24]	88[60]
feadache	21[9]	20[15]	21 [13]	9[6]	17[11]	88[54]
Allergic rash	38[32]	13[4]	17[15]	20[16]	17[8]	105[75]
Memory problems	20[12]	22 [19]	13 [10]	13[8]	26 [19]	94[68]
Nzziness/vertigo	14[10]	23[15]	15[9]	13[12]	15[8]	80[54]
Other psychiatric	16[7]	17[9]	11[7]	7[5]	37 [31]	88[59]
Worsening of seizures	17[5]	22[13]	17[12]	3[1]	17[8]	76[39]
ther neurological	9[6]	21[14]	15[9]	8[5]	18[12]	71[46]
Xher general	13[6]	19[11]	19[13]	9[6]	16[12]	76[48]
lehaviour/personality change/aggression	12[4]	9[6]	12[7]	2[1]	24[19]	59[37]
Ataola	9[6]	24 [12]	14[9]	8[6]	9[3]	64[36]
Confusion/difficulty thinking/disoriented	9[9]	16[15]	8[4]	8[6]	22 [19]	63 [53]
Anxiety/agitation/nervousness	7[7]	15[11]	8[5]	7[6]	15 [12]	52[41]
Weight loss	2[1]	4[2]	4[2]	3[1]	29[27]	42 [33]
Viplopia	5[2]	11[4]	4[2]	8[6]	6[3]	34 [17]
Nouriea	9[6]	7[3]	9[6]	15[13]	4[4]	44[32]
Weight gain	9[7]	15[12]	4[1]	1[0]	5[4]	34[24]
Accidental injury	7[2]	11[6]	12[8]	3[1]	8[3]	41 [20]
Yins and needles/dysaesthesia	4[1]	5[1]	3[1]	0[0]	26 [24]	38[27]
leep disturbance	5[2]	4[4]	9[8]	4[2]	9[8]	31[24]
ther events*	108[71]	113 [73]	110[70]	46[38]	103[64]	480[316]

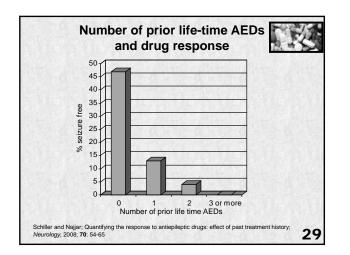
	C B Z	Р В	P H T	PA	E S M	C L B		F B M	G B P	EV	L T G	0 X C	P G B	T G B	T P M	V G B	Z N S	E S L	LCM
CNS		1																	F
Encephalopathy		500	•	•		1.57				53	10		0.17	2		•	103	150	17
Cognitive changes		•	93	12						10	15	2.5		10	٠		•		
Depression/ behavior/psychosis	10	•	•		•	•		٠		•		8		•		•	•		1
Non-CNS		1.00		-01	0,78		3	22			1		1		7				
Rash	•	•	•								•	•						15	
Leucopenia/anemia/ thrombopenia	•	•	•	•				٠		14						35	12		
Pancreatitis		0	22	•				1	•			20					123		
Nephrolithiasis				10		1				24			28	100	•		•	1	
Hepatic failure	N.		13	•	2			•			19					6			
Osteoporosis	•	•	•	•				1.40			20				1	20			
Hyponatremia	•	-	00	100						0.		•					10	•	
Weight change	1	1.4	- 5	•				3	•	149	1		•		•	•		1	
Drug interaction	•	•	•	•	1.2						٠	•	10				•		
Highest teratogenicity				•								2.5				5			

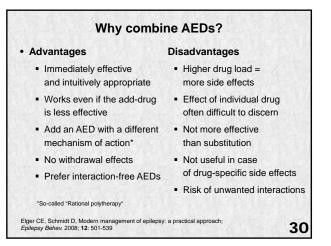


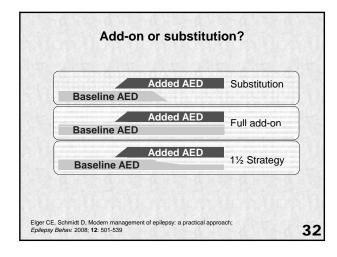
teconstat Classesa (and Heed for Higher Doced with Firenzian, And Heed for Lower Distribution, and the for Lower Distribution (and the for Lower Distribution), and the for Lower Distribution with Volume Condition, and the for Lower Distribution of the for Lower Distribution (and the for Lower Distribution), and the for Lower Distribution (and the for Lower Distribution), and the for Lower Distribution (and the for Lower Distribution), and the for Lower Distribution (and the for Lower Distribution), and the for Lower Distribution (and the for Lower Distribution), and the for Lower Distribution (and the for Lower Distribution), and the for Lower Distribution (and the for Lower Distribution), and the for Lower Distribution (and the for Lower Distribution), and the for Lower Distribution (and the for Lower Distribution), and the for Lower Distribution (and the for Lower Distribution), and the for Lower Distribution (and the for Lower Distribution), and the for Lower Distribution (and the for Lower Distribution), and the for Lower Distribution (and the for Lower Distribution), and the for Lower Distribution (and the for Lower Distribution), and the for Lower Distribution (and the for Lower Distribution), and the for Lower Distribution (and the for Lower Distribution), and the for Lower Distribution (and the for Lower Distribution), and the for Lower Distribution (and the for Lower Distribution), and the for Lower Distribution (and the for Lower Distribution), and the for Lower Distribution (and the for Lower Distribution), and the for Lower Distribution (and the for Lower Distribution), and the for Lower Distribution (and the for Lower Distribution), and the for Lower Distribution (and the for Lower Distribution), and the for Lower Distribution (and the for Lower Distribution), and the for Lower Distribution (and the for Lower Distribution), and the for Lower Distribution (and the for Lower Distribution), and the for Lower Distribution (and the for Lower Distribution), and the for Lower Distribution (and the for Low	been
gratal, nifediçine, letadişine, nimodipine, dişadır,	
Pagehisiric Amterbaline, motologiline, integrandree, deutsonnine. Amterbaline, recretabaline, et devolperanius, estaborane, parametiris, laupageiser, samine, parametine halapertikal, chilorpermatico, charaptine, charaptine, risperidene, quellapine	anip-
Antmenplastic: Cyclephraphanide, basullen, etepaside, methorenan, larigestide, sones viewe elektrides	
Antinfactive Pranty-carle, diametersic, dugo-pline, ensispines, Zidevecline, pessibly others of outrus, dolaritedire, indiamic, rinearch, sequireair	
Olier Cyclospanies, tacatinuos, diszepant, alpezetlans, Lacasepant, diszepant architeces, ural contracepticality, theophylines,	

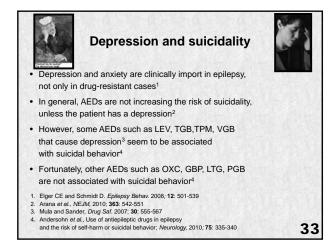



- AEDs which induce the cytochrome P450 system adversely affect bone, lipid, and gonadal steroid metabolism
- Although patients treated with inducing AEDs are at increased risk of fracture, it is still controversial whether bone mass is truly related to enzyme induction, and analogously, whether reductions in testosterone truly account for male sexual dysfunction
- Data showing elevations of surrogate cardiovascular and cerebrovascular risk endpoints with epilepsy patients, mostly inducing AED treated, are consistent and concerning, however
- Newer, non-inducing AEDs are preferable, if possible


Mintzer S. Metabolic consequences of antiepileptic drugs; Curr. Opin. Neurol. 2010; 23: 164-169 26







CRITI	CAL REVIEW AND INVITED COMMENTA	RY
for	orrected efficacy of modern antiepilept refractory epilepsy: Systematic review and meta-analysis itefan Beyenburg, †‡Knut Stavern, and ÿDieter Schmidt	
	The overall weighted pooled-risk difference in favor of AEDs over pla- cebo for seizure-freedom in the total sample of adults and children was 6% [55% confidence interval (CI) $4-8$, $z=6.47$, $p<0.001$] and 21% (95% CI $19-24$, $z=17.13$, $p<0.001$) for 50% sei- zure reduction. Although the presence of moder- ate heterogeneity may reduce the validity of the	

Natural history of treated epilepsy

- Summary after 37 years of follow-up
 - 48% Terminal remission from the start
 - 19% Late remission (Relapsing-remitting course)
 - = 67% Good outcome with terminal remission
 - 14% Worsening course (Remitting-relapsing)
 - 19% Drug resistant epilepsy from the start
 - = 33% Poor outcome without remission

Sillanpää M, Schmidt D. Natural history of treated childhood-onset epilepsy: prospective, long-term population-based study; *Brain*; 2006; **129**: 617-624

34

AEDs for the elderly

- Given the adverse metabolic effects induced by enzyme-inducing AEDs discussed earlier, metabolically inert modern AEDs such as gabapentin, lamotrigine or levetiracetam are preferable for the elderly^{1,2}
- AEDs should be given at a low maintenance dose and only after slow titration as the elderly are more sensitive to adverse effects and often respond well to low doses²
- As many elderly take antihypertensive drugs that cause hyponatremia, Oxcarbazepine, which also causes hyponatremia, should be used with caution³
- Mintzer S. Metabolic consequences of antiepileptic drugs; *Curr. Opin. Neurol.* 2010; 23: 164-169
 Brodie et al., Epilepsy in later life; *Lancet Neurol.* 2009; 8: 1019-1030
 Arif et al., Comparative effectiveness of 10 antiepileptic drugs in older adults with epilepsy; *dreb* Merce 104: 67: 404-45 Arch Neurol. 2010: 67: 408-415

35

• Despite its benefits, stopping AEDs in patients seizure free for several years is associated with doubling the risk of seizure recurrence for up to 2 years compared with continued treatment¹

- · Nevertheless, stopping all AEDs is recommended,
 - · If it turns out that the patient has no epileptic seizures
 - If the risk of recurrence is small (about in 25% of patients). as in children with self-limiting course, particularly in those with childhood absence epilepsy or those with non-symptomatic etiology and rare seizures²
- Discontinuation of AEDs should be very slow, over weeks and months and, in those on several drugs, be done for one drug at the time. Rapid discontinuation of certain AEDs (e.g., Phenobarbital) may cause withdrawal seizures

```
Randomised study of anticepiteid drug withdrawal in patients in remission; Medical Research Council
Anticepitepito Drug Withdrawal Study Group; Lancet; 1991; 33: 1175-80
Sillanpää M, Schmidt D. Prognosis of seizure recurrence after stopping anticepitepite drugs in seizure-free
patients: A long-term population-based study of childhood-onset epilepsy; Epilepsy Behav. 2006; 8: 713-12
                                                                                                                                                                                                                                                                                                                                                                 36
```


Stopping AEDs (2)

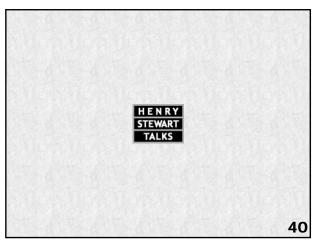
However, on average, one in three adults has a seizure recurrence, though the range can go up to 66% (34%, range 12-66%, CI 95%: 27-43)1

- The risk of seizure recurrence is particularly high for those with juvenile myoclonic epilepsy and symptomatic focal epilepsy,
- the most frequent epilepsy in adults1
- Patients who did become seizure-free only after a number of years or after a number of AEDs may have a higher risk of seizure recurrence than those who became seizure-free with the first adequate AED
- Furthermore, seizure freedom is surprisingly neither guaranteed nor immediate in some patients when being treated for a seizure recurrence²; On the other hand, continued treatment does not guarantee uninterrupted seizure freedom in those who have become seizure free³

- Schmidt D and Löscher W. Uncontrolled epilepsy following discontinuation of antiepileptic drugs in seizure-free patients: a review of current clinical experience; *Acta neurol scand*. 2005; **111**: 291-300
 Sillanpää M, Schmidt D, Prognosis of seizure recurrence after stopping antiepileptic drugs in seizure-free patients: A long-term population-based study of childhood-onset epilepsy. *Epilepsy Behav.* 2006; 8: 713-19
 Randomised study of antiepileptic drug withdrawal in patients in remission; Medical Research Council **37** Antiepileptic Drug Withdrawal Study Group; *Lancet*, 1991; 33: 1175-80

Visions for the future

- · As four decades ago, one in three new-onset patients has drug-resistant seizures
- · Current AEDs do not seem to prevent epilepsy or block its progression or affect the underlying natural history of epilepsy
- · Thus, there is an unmet need for AEDs that better block seizure generation and the underlying epilepsy, or ideally both, i.e., offer a complete cure of epilepsy


38

Summary

- · Current AED treatment is generally well-tolerated and provides seizure freedom in 2 out of 3 patients with new-onset epilepsy
- · However, we do not seem to have made substantial improvements in effectiveness since the introduction of Carbamazepine and Valproate over 40 years ago
- · Unmet needs include seizure-freedom in patients with previously drug-resistant seizures, prevention of epilepsy and control of the underlying epilepsy, in short, a cure for epilepsy

39

