Virulence and Antibiotic Resistance
Regulation in Human Pathogens

Professor Chuan He
Department of Chemistry
The University of Chicago

Threats from pathogens

- **Staphylococcus aureus**
 - 12 million patients are at risk each year in US
 - Has a crude mortality rate of 25%

- **Pseudomonas aeruginosa**
 - Accounts for 10.1 percent of all hospital-acquired infections
 - Averages about 4 infections per 1000 discharges in US hospitals

- **M. tuberculosis**

Challenges:
1. Counter the rise of antibiotic-resistance
2. Control virulence

Strategies to treat infections

- Inhibitors of cell wall synthesis: beta-lactams and vancomycin
- Inhibitors of protein synthesis: aminoglycosides, tetracyclines, lincomamides, streptogramins and chloramphenicol
- Inhibitors of DNA synthesis: quinolones
- Inhibitors of RNA synthesis: rifamycins

The screen versions of these slides have full details of copyright and acknowledgements
Virulence and Antibiotic Resistance
Regulation in Human Pathogens
Professor Chuan He

Antibiotic resistance

http://www.bioteach.ubc.ca/Biomedicine/CationicPeptides/antibiotresist.gif

E. coli MarR
Repressor for drug efflux pumps

Proposed mechanism: drug-binding induces dissociation of MarR from promoter DNA which leads to activation of drug efflux genes and antibiotic resistance

Martin, R. G. & Rosner, J. L., PNAS, 1995, 92, 5456-5460

Bacterial multidrug resistance regulators

The screen versions of these slides have full details of copyright and acknowledgements
Virulence and Antibiotic Resistance
Regulation in Human Pathogens
Professor Chuan He

MarR family transcriptional factors in *S. aureus*

- mgrH1 (SAV2386)
- mgrH2 (SAV2265)
- mgrH3 (SAV2520)

S. aureus is responsible for most wound and hospital acquired infections.

Susceptibility of *S. aureus* mutant strains to norfloxacin (NOR)

Resistance to quinolone for *S. aureus* strains
Virulence test using the murine abscess model of infection

Crystal structure of MgrA

The molecular mechanism for MgrA-based regulation?

1. MgrA is a DNA-binding protein (transcription repressor?)

2. MgrA mutant shows resistance to quinolone-type antibiotics and vancomycin!!! The mutant also shows higher susceptibility towards oxacillin-type antibiotics

3. MgrA does not bind these molecules that are quite different in structure

How does MgrA regulate S. aureus response to these antibiotics and virulence? MgrA controls expression of ~350 genes in S. aureus
A unique Cys residue

Oxidation sensing?

Cysteine sulfenic acid formation in MgrA

The screen versions of these slides have full details of copyright and acknowledgements
Virulence and Antibiotic Resistance
Regulation in Human Pathogens

Professor Chuan He

Gel-shift assay to study MgrA-DNA interaction

[Image of gel-shift assay]

CHP: cumene hydroperoxide

Bio-relevance: plate sensitivity assays

[Image of plate sensitivity assays]

Oxidative stress "activates" antibiotic resistance of *S. aureus* via MgrA

Further in vivo results

[Image of in vivo results]

Antibiotic resistance levels determined in the absence or presence of paraquat (PQ), a reagent known to induce oxidative stress in vivo

Induction of *norA*, a gene repressed by mgrA, by oxidative stress

The screen versions of these slides have full details of copyright and acknowledgements.
Mgra is a redox switch in *S. aureus*…

- Mgra uses an oxidative sensing mechanism to sense oxidative stress and defend *S. aureus* against antibiotics and, perhaps, our immune responses in a global manner!
- Our immune response to bacteria infection is to generate various ROS (peroxides, superoxide, NO) to kill pathogens
- The antibiotics that the Mgra mutant responds to also induce oxidative stress
- This could be a general concept true for most pathogens

SarZ, an Mgra homologue in *S. aureus*…

- Mgra regulates ~350 genes
- MgrH1 (SarZ), a homologue of Mgra, regulates ~80 genes
- Most noticeably SarZ seems to regulate switching from O\textsubscript{2}-dependent metabolisms to anaerobic energy production pathways!

SarZ is also an oxidation sensor
SarZ affects virulence, antibiotic resistance and autolysis

SarZ affects virulence, antibiotic resistance and autolysis

Crystal structure of the reduced SarZ

SarZ

MgrA

Crystal structure of the oxidized SarZ with Cys13-SOH

Oxidized

SarZ

Cys-SH

Cys-SOH

Cys-S-SR

Poor, C. B., Chen, P. R., Duguid, E. M., Rice, P. A. and He, C. J. Biol. Chem. 2009, 284, 23517-23524

The screen versions of these slides have full details of copyright and acknowledgements
How *Staphylococcus aureus* senses host immune defense

- Molecular level signals and mechanisms that control the virulent states of *Staphylococcus aureus*
- Host signals that affect the virulence of the pathogen and regulatory pathways in bacteria in response to these signals

Hypothesis

- MgrA regulates ~350 genes
- SarZ, a homologue of MgrA, regulates ~80 genes

Small molecules to “trick” *S. aureus* into the low virulence form
Virulence and Antibiotic Resistance Regulation in Human Pathogens
Professor Chuan He

Strategies

PVS works like hydrogen peroxide

An epoxide as a mild and selective alkylator

The screen versions of these slides have full details of copyright and acknowledgements
Phenyl epoxide sulphonate (PES) activates MgrA

Antibiotics plate assay:
VCM 1.4 μg/ml

Wild-type
100 μM
200 μM
300 μM
400 μM
500 μM

Northern blot assay:

Wild-type
mgrA

RNAIII: activated by MgrA

The \textit{in vivo} effect of the epoxide

Developing small molecule modulators
Virulence and Antibiotic Resistance Regulation in Human Pathogens
Professor Chuan He

FA-based HTS for non-covalent modulators

High throughput screen

Fluorescence anisotropy

\[\frac{1}{P} = \frac{1}{P_0} \left(\frac{V}{M} \right) \]

V: molecular volume (molecular weight)

Large anisotropy P
Small anisotropy P

NSRB at Harvard

100,000 compounds were screened and over 100 hits were obtained.
NSRB: The National Screening Laboratory for the Regional Centers of Excellence in Biodefence

Other pathogens

MgA homologues can be found in S. epidermidis, B. anthracis, Vibrio alginolyticus, Brucella abortus biovar, Listeria monocytogenes, Enterococcus faecium, Clostridium perfringens, Streptococcus agalactiae, Pseudomonas aeruginosa and Mycobacterium tuberculosis

Pseudomonas aeruginosa
Mycobacterium tuberculosis
Virulence and Antibiotic Resistance
Regulation in Human Pathogens
Professor Chuan He

Two MgrA homologues in *P. aeruginosa*

MgrA? PA2825

MgrH1? PA2849

OspR (oxidative stress response and pigment production regulator) in *P. aeruginosa*

Cys24 in OspR is redox active
OspR plays a role in virulence

Lan, L. and He, C. Mol. Microbiol. 2010, 75, 76.

P. aeruginosa MexR

MexR regulates antibiotic resistance in P. aeruginosa

Hypothesis

 MexR regulates antibiotic resistance in P. aeruginosa.
MexR oxidation leads to its dissociation from DNA

1 μM MexR dimer can be readily dissociated by treatment of DTT (1-2 μM)

Cys30 and Cys62 are engaged in oxidation sensing

Intermonomer disulfide bond formation in MexR

MexR oxidation leads to its dissociation from DNA

Computational analysis of the oxidized MexR structure

By Hu and Dinner

The screen versions of these slides have full details of copyright and acknowledgements
Redox potential measurement of MexR

The redox potential was determined to be ~ -155 mV

Experiments probing in vivo response

MexR senses peroxide stress and regulates antibiotic resistance

1. Oxidation sensing is a mechanism that pathogens use to sense adverse conditions (including host immune response) and regulate responses in a global manner.

a. MgrACys12—SH → MgrACys12—SOH
 SarZ (MghH1)
 OspR in P. aeruginosa
 MgrA in Mtb

b. MexRCys30—SH → MexRCys30—S
 MexRCys30—SH
 MexRCys62’—SH, MexRCys62’—S
 E. coli MarR...

2. Fundamental signaling mechanism of the two-component system.

Acknowledgements

- Dr. Peng R. Chen
- Dr. Zigang Li
- Mr. Fe Sun
- Ms. Catherine Poor
- Dr. Lefu Lan
- Dr. Satoshi Nishida
- Dr. Hao Chen
- Dr. Cai-Guang Yang

Collaborators:
- Dr. Dominique Missiakas
- Dr. Olaf Schneewind
- Dr. Paul Dunman
- Dr. Taek Bae
- Ms. Alice Cheung
- Dr. Su Chiang

Funding:
- NIH NIAID
- NIAID GLRCE
- NIAID NSRB
- Burroughs Wellcome Fund

The screen versions of these slides have full details of copyright and acknowledgements.
The screen versions of these slides have full details of copyright and acknowledgements