Gastric Cancer, Gastritis and the Role of H. pylori

Prof. Anthony Axon

Centre for Digestive Diseases
The General Infirmary
Leeds

World Organisation of Digestive Endoscopy

• Honorary Professor of Gastroenterology University of Leeds UK
• Past President BSG, ESGE, UEGF, OMEDE

Gastric cancer mortality is second only to lung cancer

The screen versions of these slides have full details of copyright and acknowledgements
Aims of this presentation

• Understand the natural history of Hp gastritis
• Review the evidence showing Hp to be an essential risk factor for gastric cancer
• Discuss the mechanisms involved in gastric carcinogenesis
• Appreciate why gastric cancer incidence varies
Acute infection with *H. pylori*

- Usually occurs in childhood
- 7-10 day incubation
- Epigastric pain, flatulence and halitosis
- Anorexia with mucous vomiting
- Achlorhydria
- Symptoms resolve but the infection often persists
- Transmission unknown

Acute gastric inflammation immediately after infection with *Helicobacter pylori*

[Image: Sobala et al., Gut (1991) 32(11) 1415-1418]

Chronic gastritis with “activity” in the antrum some years following infection

[Image: Normal, healthy antrum | Infected antrum]
Gastric Cancer,
Gastritis and the Role of H. pylori
Prof. Anthony Axon

Helicobacter gastritis before and one month after treatment

Before treatment

After treatment

Dixon, Current Diagnostic Pathology (1994) 1, 80-89

H. pylori gastric mucosa interactions

Development of atrophy and intestinal metaplasia after many years of infection
Gastric Cancer, Gastritis and the Role of H. pylori
Prof. Anthony Axon

H. pylori, gastric atrophy and IM
a multicentre study of 2455 patients

Natural history of Hp Gastritis
• Acute infection (days)
• Chronic inflammation (years)
• Atrophy and intestinal metaplasia (severity and time)
• Hypochlorhydria (loss of parietal cells)
• Overgrowth of oral and intestinal bacteria
• Hp disappears and serology reverts

Aims of this presentation
• Understand the natural history of Hp gastritis
• Review the evidence showing Hp to be an essential risk factor for gastric cancer
• Discuss the mechanisms involved in gastric carcinogenesis
• Appreciate why gastric cancer incidence varies

The screen versions of these slides have full details of copyright and acknowledgements
Gastric Cancer, Gastritis and the Role of H. pylori
Prof. Anthony Axon

Meta analysis of nested studies showing association between Hp and gastric cancer

Gastric cancer and infection with H. pylori using IgG ELISA serology

- Odds ratio of 3 is not enough to draw the conclusion that Hp is a necessary factor
- All the nested studies used standard anti-Hp ELISA serology
- The studies may have underestimated the odds ratio

Odds ratio 2.2 (95% confidence interval 1.4-3.6)
Ekstrom et al., Gastroenterology (2001) 121: 784-791

Gastric cancer and infection with H. pylori (corrected for CagA serology)

Odds ratio 21.0 (95% confidence interval 8.3-53.4)
Ekstrom et al., Gastroenterology (2001) 121: 784-791
Helicobacter gastritis and gastric acidity

High acid

Low acid

Type of gastritis and cancer risk, an 8 year prospective study of 1526 patients

<table>
<thead>
<tr>
<th>Gastritis</th>
<th>Relative risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrophy</td>
<td></td>
</tr>
<tr>
<td>None or mild</td>
<td>1.0</td>
</tr>
<tr>
<td>Moderate</td>
<td>1.7 (0.8-3.7)</td>
</tr>
<tr>
<td>Severe</td>
<td>4.9 (2.8 - 19.2)</td>
</tr>
<tr>
<td>Distribution</td>
<td></td>
</tr>
<tr>
<td>Antral predominant</td>
<td>1.0</td>
</tr>
<tr>
<td>Pan gastritis</td>
<td>15.6 (6.5 - 36.8)</td>
</tr>
<tr>
<td>Corpus predominant</td>
<td>34.5 (7.1-166.7)</td>
</tr>
<tr>
<td>Intestinal metaplasia</td>
<td></td>
</tr>
<tr>
<td>Absent</td>
<td>1.0</td>
</tr>
<tr>
<td>Present</td>
<td>6.4 (2.6-16.1)</td>
</tr>
</tbody>
</table>

Corpus atrophy in gastric cancer, findings in 105 cancers

Nearly all cancer patients have corpus atrophy

Komoto et al., Am J Gastroenterol (1998) 93: 1271-6
Gastric Cancer,
Gastritis and the Role of H. pylori
Prof. Anthony Axon

Gastritis
- Mild gastritis (No complications)
- Duodenal ulcer
- Severe antral gastritis
- Gastric ulcer
- Severe corpus or pan gastritis
- Atrophy IM
- Low Acid
- High Acid
- Cancer

The Mongolian gerbil

H. pylori and gastric cancer
- Nearly all cancer cases have been infected with Hp
- Gastric cancer is associated with corpus predominant atrophy and IM
- These changes are caused by long standing Hp infection
- Corpus gastritis is the main predictor for gastric cancer
- Animal models show that Hp infection leads to cancer

The screen versions of these slides have full details of copyright and acknowledgements
Aims of this presentation
- Understand the natural history of Hp gastritis
- Review the evidence that showing Hp to be an essential risk factor for gastric cancer?
- Discuss the mechanisms involved in gastric carcinogenesis
- Appreciate why gastric cancer incidence varies

Does Hp itself directly cause gastric cancer?
- Antral predominant gastritis does not cause cancer
- Duodenal ulcer doesn’t become neoplastic
- H. pylori does not infect intestinal metaplasia
- 25% of gastric cancer cases develop after H. pylori has disappeared
- Gastric cancer is common in pernicious anaemia

Physiological effects of chronic gastritis, atrophy and intestinal metaplasia

The Correa hypothesis
- Hypochlorhydria
- Overgrowth of metabolically active intestinal organisms
- Increase of mutagenic reactive oxygen species in the mucosa
- Absence of luminal ascorbic acid
- Increased cell turnover
- This leads to cancer
Epithelial cell proliferation before and after *Hp* eradication

<table>
<thead>
<tr>
<th>Condition</th>
<th>Before</th>
<th>Immediately after treatment</th>
<th>One year later</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal (n=21)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hp+ve (n=42)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hp+ve (n=42)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Failure (n=11)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Success (n=36)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Failure (n=6)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lynch et al., Gut (1995) 38: 345-350

Intragastric ascorbic acid concentration before and after *Hp* eradication

<table>
<thead>
<tr>
<th>Condition</th>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>B=Before treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A=After treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal (n=53)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reactive gastritis (n=34)</td>
<td>1210</td>
<td>70</td>
</tr>
<tr>
<td>Hp gastritis (n=77)</td>
<td>23885</td>
<td>112</td>
</tr>
</tbody>
</table>

Sobala et al., Gut (1993) 34, 1038-41

Reactive oxygen species in *H. pylori* gastritis

<table>
<thead>
<tr>
<th>Histology</th>
<th>Chemiluminescence (cpm/mg)</th>
<th>Malondialdehyde (nmol/litre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal (n=53)</td>
<td>1210</td>
<td>70</td>
</tr>
<tr>
<td>Reactive gastritis (n=34)</td>
<td>1576</td>
<td>89</td>
</tr>
<tr>
<td>Hp gastritis (n=77)</td>
<td>23885</td>
<td>112</td>
</tr>
</tbody>
</table>

Drake et al., Gut (1998) 42: 768-771
Gastric Cancer, Gastritis and the Role of H. pylori
Prof. Anthony Axon

Effect of treatment

<table>
<thead>
<tr>
<th></th>
<th>Success</th>
<th>Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before (S)</td>
<td>After (S)</td>
</tr>
<tr>
<td>Chemiluminescence</td>
<td>16103</td>
<td>1141***</td>
</tr>
<tr>
<td>Malondialdehyde</td>
<td>122</td>
<td>99**</td>
</tr>
</tbody>
</table>

p<0.001***
p<0.01**

Drake et al., Gut (1998) 42: 768-771

Stem cells

- Ordinary tissue cells have a limited life span
- Stem cells are long lived and essential for the structural maintenance of the organ
- Embryonic stem cells differentiate into peripheral stem cells
- Peripheral stem cells are tissue specific
- The bone marrow can provide an emergency team to help in acute injury
- These are the Bone Marrow Derived Cells (BMDCs)

Bone marrow derived cells (BMDCs)

- These provide cells for short term repair
- They include stem cells
- Bone marrow stem cells are versatile
- They can take over the role of gastric stem cells
- As in chronic inflammation with atrophy
- They are unstable and produce metaplastic offspring
- These may become dysplastic
Bone marrow derived cells and gastric cancer

Control

Sham infected

4/52

20/52

>12/12

New model for the development of gastric cancer

Aims of this presentation

• Understand the natural history of Hp gastritis
• Review the evidence showing Hp to be an essential risk factor for gastric cancer?
• Discuss the mechanisms involved in gastric carcinogenesis
• Appreciate why gastric cancer incidence varies
Gastric Cancer, Gastritis and the Role of H. pylori
Prof. Anthony Axon

World map of gastric cancer mortality
Estimated age-standardised mortality rate per 100,000; Stomach: male, all ages

Why does gastric cancer vary in incidence?

- Prevalence of H pylori
- Severity of gastritis
- Pattern of gastritis

Helicobacter pylori infects those who are socio-economically disadvantaged

- The poverty in the UK during the 19th-20th century
Japanese versus British gastritis

- Japan – very high incidence, UK – relatively low

Comparison of gastritis in matched populations from Japan and England

- 252 age matched consecutive patients in Tokyo and Leeds/Bradford
- Gastritis assessed histologically
 - Severity
 - Pattern

Intestinal metaplasia and atrophy in matched populations from Japan and England

Naylor, Gotoda et al. (2004)

Naylor et al., Gut (2006) SB: 1545-1552
Differing patterns of gastritis in Japan and England

Dietary factors in the development of gastric cancer

- Fruit and vegetables are negatively associated
- Low dietary vitamin C is positively associated
- Vitamins not protective in prospective studies
- Nitrogenous products may be positively associated
- Salt is strongly associated and also increases risk in animal studies

Riboli and Norat, pub health nutr (2001) 4: 475-484
Effects of the CagA pathogenicity island

- Are the H. pylori organisms in Japan more virulent than those in the UK?
- CagA positive organisms, which are more virulent, are present in greater numbers in the far east
- But CagA is only one virulence factor, there are many other factors

High virulence H. pylori genotypes increase the risk of non-cardia cancer

221 chronic gastritis
222 gastric cancer

<table>
<thead>
<tr>
<th></th>
<th>Odds ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>VacAs1</td>
<td>17</td>
</tr>
<tr>
<td>VacAm1</td>
<td>6.7</td>
</tr>
<tr>
<td>CagA+ve</td>
<td>15</td>
</tr>
</tbody>
</table>

Genetics and gastric cancer

- Interleukin-1 (IL-1) is an inflammatory cytokine
- IL-1β inhibits gastric acid secretion x 100 PPI
- The IL-1 gene cluster on 2q is polymorphic
- IL-1B-31T+ and IL-1RN*2/*2 have an odds ratio of 7.5 and 2.1 for gastric cancer

Proinflammatory cytokine gene polymorphisms increase the risk of non-cardia gastric cancer

<table>
<thead>
<tr>
<th>Polymorphism</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1β-511</td>
<td>2.3</td>
</tr>
<tr>
<td>IL-1RN</td>
<td>3.6</td>
</tr>
<tr>
<td>TNF-α-308</td>
<td>2.2</td>
</tr>
<tr>
<td>IL-10</td>
<td>2.5</td>
</tr>
<tr>
<td>One polymorphism</td>
<td>2.8</td>
</tr>
<tr>
<td>Two polymorphisms</td>
<td>5.4</td>
</tr>
<tr>
<td>Three or more</td>
<td>27.3</td>
</tr>
</tbody>
</table>

Proinflammatory cytokine polymorphisms enhance the carcinogenic effect of high virulence *H. pylori* genotypes

<table>
<thead>
<tr>
<th>H. pylori</th>
<th>Host</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1RN</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>IL-1β-511</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>VacAs1</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>VacAm1</td>
<td>7.4</td>
<td></td>
</tr>
<tr>
<td>VacAs1</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>VacAm1</td>
<td>8.8</td>
<td></td>
</tr>
<tr>
<td>CagA</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>CagA</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

Helicobacter gastritis and gastric acidity

High acid Low acid
Inflammation in the corpus increases when acid secretion is reduced

- Corpus inflammation increased after 4 weeks omeprazole
 - Solcia, Scand J Gastro 1994
- Significant increase in severity after 4 weeks ranitidine
 - Meining, APT 1997
- Worsened significantly after 1 year PPI Rx
 - Stolte, APT 1998

Development of corpus atrophy in infected patients treated with acid suppression

- Atrophy increased at a rate of 6.1% per year
- Atrophy developed at a rate of 2.7% per year
 - Lundell Gastroenterology 1999
- Atrophy occurred at a rate of 4.7% per year
 - Klinkenberg-Knol Gastroenterology 2000
- Annual incidence of atrophy 2.5%
 - Lamberts Digestion 2001

Increasing acid secretion in Japan
Acid secretion is related to lean body mass

Baron JH, Gut (1985) 36: 637-642

Increasing height of men in Europe 1960-1990

Immune experience

- Immune experience may influence the type of inflammatory response to H. pylori
- Animals infected with Helminths develop a Th2 response to Hp infection
- These animals have a reduced degree of gastric atrophy
- This if extrapolated to humans might explain some of the differences in disease prevalence

Fox et al., Nature medicine (2000) 6: 536-542

The screen versions of these slides have full details of copyright and acknowledgements
Summary

- *Helicobacter pylori* is a necessary factor in the causation of most non-cardia gastric cancer
- It may not be the direct cause of cancer
- Severe corpus gastritis is the phenotype that predicts cancer
- This is affected by environmental factors; diet, age and immune experience
- *H. pylori* and Host genetics and acid secretion