Melanoma

- Melanocytes are specialised pigment cells
 - Skin, eyes, ear, brain, heart
 - Skin/hair tone
 - Protection from UV radiation (tanning response)
 - Precursors of melanoma
- Melanoma: the most deadly skin cancer
 - 10% of all skin cancers, but 80% of skin cancer deaths
 - Europe: over 62,000 cases pa; ~12,000 deaths
 - 80% are cured by surgery; 20% die of metastatic disease
 - Median survival: 6-9 months; 5 year survival: 5-10%
 - Risk factors: UV light/genetics

ERK signalling in melanoma

- CKIT: 5% (mucosal, acryl)
- NRAS: 22%
- KRAS: 2%
- HRAS: 1% (cutaneous)
- GNAQ: 5% (uveal)
- GPCR
- RAS
- BRAF: 44% (cutaneous)
- MEK
- ERK
- Hyper-activated in over 90%
RAS and RAF Signalling in Melanoma: Biology and Therapies
Professor Richard Marais

V600EBRAF transforms melanocytes
ERK signalling
Soft agar growth

Wellbrock et al., 2004 Cancer research

Mouse models of melanoma

• Express oncogene in a tissue specific manner—i.e., melanocytes
• Express oncogene at normal physiological levels
• Expression should be regulated to mimic its acquisition in humans

V600E BRAF inducible mouse

The screen versions of these slides have full details of copyright and acknowledgements
V600E BRAF induces skin hyper-pigmentation

- Image A: Braf^{WT}
- Image B: Braf^{V600E}

V600E BRAF induces senescence in melanocytes

- Images showing senescent cells (SA-β-Gal)
- Ki-67 staining
- p16 expression
- Gapdh control

V600E BRAF induces melanoma

- Image of melanoma induction
- Graph showing tumor growth over time
- Gene expression changes

The screen versions of these slides have full details of copyright and acknowledgements
Tumour cells have metastatic potential

Cells grow as tumours in lungs

Role of p16INK4a?

Over 50% of human tumours have lost the tumour suppressor p16INK4a

BRAF mutations in cancer

Wan et al., 2004
Most mutants are active

Impaired activity mutants: activate ERK through CRAF

Kinase-dead mutants don’t appear to signal

Wan et al., 2004
Garnett et al., 2005
BRAF mutants have different modes of action

- Impaired activity mutants
 - BRAF
 - CRAF

- Activated mutants (high/intermediate)
 - BRAF* → MEK → ERK

- Kinase-dead mutants
 - BRAF* → ?

BRAF mutations in cancer

- ~11,000 V600E mutations in BRAF in cancer
 - No coincidence with RAS mutations
- 32 D594 mutations in BRAF in cancer
 - 3 are coincident with KRAS mutations (G12/G13)
 - 1 is coincident with an NRAS mutation (Q61)
- Highly significant enrichment p < 10^-7
- Suggests a functional interaction between kinase-dead BRAF and oncogenic RAS?

Conditional kinase-dead BRAF and oncogenic KRAS mice

The screen versions of these slides have full details of copyright and acknowledgements
D594 and G12V KRAS cooperate to induce melanoma

- PD184352 (PD): MEK inhibitor (CI1040)
- Sorafenib (SF): BRAF, CRAF and other kinases
- 885-A: BRAF selective (analogue or SB590885)
- PLX4720 (PLX): BRAF selective
BRAF is inert in RAS mutant melanoma cells

- (NRAS) WM1781c
- (BRAF) Colo828

BRAF, CRAF, ppERK, ERK2

Dumaz et al., 2005

CRAF and RAS are required

D04 (NRAS mutant cells)

RAF inhibitors induce CRAF binding to BRAF in RAS mutant cells

WM852 (NRAS)

A375 (V600EBRAF)
RAS and RAF Signalling in Melanoma: Biology and Therapies
Professor Richard Marais

RAS binding is required

<table>
<thead>
<tr>
<th>IP Myc CRAF</th>
<th>WB: BRAF</th>
<th>WB: mycCRAF</th>
<th>WB: BRAF</th>
<th>WB: mycCRAF</th>
</tr>
</thead>
<tbody>
<tr>
<td>EV</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>885-A</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>EV</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>885-A</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

BRAF inhibitors recruit BRAF to the membrane

Growth factors induce BRAF-CRAF complexes and sustained signalling
Gatekeeper mutants

Kinase-dead BRAF binds to CRAF & activates MEK

• Similar results with K46M BRAF and D594V BRAF
Sorafenib induced paradoxical CRAF activation

- Sorafenib is a pan-RAF inhibitor that may inhibit CRAF

T421NCRAF converts Sorafenib to a pathway activator

Pan-RAF inhibitors induce paradoxical CRAF activity
BRAF mutants have different modes of action

- Impaired activity mutants
 - BRAF
 - CRAF

- Activated mutants (high/intermediate)
 - BRAF
 - MEK
 - ERK

- Kinase-dead mutants
 - RAS
 - BRAF
 - CRAF

Wan et al., 2004
Garnett et al., 2005
Adapted from Garnett and Marais, 2004
Conclusions

- V600E BRAF can be a founder event in melanomagenesis
- BRAF is a validated therapeutic target
- BRAF drugs are effective in patients
- BRAF inhibition activates MEK through CRAF when RAS is mutated
- Kinase-dead BRAF and oncogenic RAS cooperate to induce melanoma
 - What of other tumours; other kinases; pseudo-kinases
- BRAF-selective drugs:
 - Should not be used in RAS mutant tumours
 (use pan-RAF, CRAF drugs or combinations)
 - Theoretical risk of tumour progression if RAS mutations are acquired
 - Theoretical risk of tumour promotion in other tissues
RAS and RAF Signalling in Melanoma: Biology and Therapies
Professor Richard Marais