Epidemic Typhus and Other Louse- and Mite-Borne Infections

Kevin R. Macaluso Ph.D.
School of Veterinary Medicine
Louisiana State University
Baton Rouge, La

Outline

- Louse-borne infections
 - Epidemic typhus
 - Trench fever
 - Relapsing fever
- Mite-borne infections
 - Rickettsialpox
 - Scrub typhus
- General characteristics
 - Life cycle
 - Classification
 - Medical importance
- History of disease
- Etiological agent
- Vector(s)
- Transmission cycle

Lice: general characteristics

- Small, wingless insects
- 4-10 mm long
- Adult lice are dorsal-ventrally flattened
- Elongate with 3 distinct body segments
- Mouthparts adapted for chewing or sucking
- Host-specific

Image courtesy of Michael Groves
Epidemic Typhus and Other Louse- and Mite Borne Infections
Kevin R. Macaluso Ph.D

Lice: life cycle

- Hemimetabolous life cycle with 3 immature stages superficially resembling the adult
- Female lice lay <10 eggs/day
- Louse eggs are called "nits"

Louse-borne: life cycle

Lice: classification

Class: Insecta
Order: Phthiraptera
Suborders: Anoplura, Amblycera, Ischnocera (Mallophaga), Rynchophthirina

- 3,200 species of lice described
- 12 families of chewing lice
- 15 families of sucking lice

The screen versions of these slides have full details of copyright and acknowledgements
Lice: species of medical importance

- The species of greatest medical importance is *Pediculus humanus*
- Lice infestation is still persist in less developed countries

Lice: disease-causing agents

- *Rickettsia*
- *Bartonella*
- *Borrelia*

Organization of louse-borne pathogens

Alpha-proteobacteria

Order: Rickettsiales
- Family: Rickettsiaceae
 - Genus: *Rickettsia*
 - Spotted fever
 - Typhus
 - Orientia
 - Anaplasmataceae
 - Rhizobiales
 - Bartonellaceae
 - *Bartonella*

Order: Spirochaetales
- Family: Spirochaetaceae
 - Genus: *Borrelia*
Biological characteristics of *Rickettsia*
- Obligate intracellular parasite
- Gram negative bacteria (0.3 x 1 to 2 µm)
- Cocobacillus with complex outer coats with capsule or slime layer
- LPS (weak endotoxin activity)
- Human pathogens
- Virulence factors: unknown
- Transmitted by fleas, lice, mites (ticks)

Biological characteristics of *Bartonella*
- Facultative intracellular
- Gram negative rod (0.3 x 0.5 µm wide and 1-1.7 µm long)
- Can be grown on axenic media or cocultivated in cell culture
- Transmitted or associated with fleas, lice, and mites (ticks)

Biological characteristics of *Borrelia*
- Gram negative, long helically coiled (spiral-shaped)
- 0.1 x 0.6 µm wide and 5-250 µm long
- Chemoheterotrophic
- Flagella that run between the cell wall and outer membrane
- Human pathogens
- Transmitted by lice and ticks
Epidemic Typhus and Other Louse- and Mite Borne Infections
Kevin R. Macaluso Ph.D

Louse-borne: epidemic typhus

History:
• 1083 – described in Spain
• 1536 – distinguished from plague
• 1700’s and 1800’s – distinguished from typhoid fever
• 1900’s – louse transmission
• 1930 – Zinsser

Image from Roland Huet

Louse-borne: epidemic typhus (2)
Etiological agent: *Rickettsia prowazekii*

Transmission cycle
• Transmission occurs via contamination of bite sites with feces
• Infection through aerosols has also been reported
• Lice also suffer from *R. prowazekii*
• Vertebrate host is necessary for *R. prowazekii* lifecycle

Bechah et al., Lancet Infect Dis. 2008

www.ceen.org/docs/001-613/001-613.html
Louse-borne: trench fever

History:
- Affected >1 million people during World War I
- The name ‘trench fever’ was first mentioned in 1915
- In 1919, transmission by lice demonstrated
- Affected the German army in Russia in World War II
- In 1949, laboratory accident lead to outbreak and precise characterization of the disease
- Sporadic epidemics since World War II
- Reemergence of *B. quintana* among the homeless in Europe and the United States and in refugee camps

Louse-borne: trench fever (2)

Etiological agent: *Bartonella quintana*

- Clinical symptoms include:
 - Headache, dizziness, pain in shins, and elevated temperature
 - 3-7 days post-infection temperature drops; followed by a relapse to fever
- Variable clinical manifestations:
 - Classic with shin pain
 - Typhoid-like with prolonged fever and rash
 - Abortive form, brief, less intense

Louse-borne: trench fever (3)

Transmission cycle
- Between humans and lice:
 - Lice ingest take blood meal from bacteremic host
 - Lice are transmitted between individuals via clothing or bedding
 - *B. quintana* multiplies in the louse’s intestine
 - Subsequent biting of new host results in scratching; thus facilitating fecal transmission of *B. quintana* to uninfected hosts
Epidemic Typhus and Other Louse- and Mite Borne Infections
Kevin R. Macaluso Ph.D

Louse-borne: relapsing fever

History:
• Discovered by Otto Obermeier
• Large epidemics in the first half of last century
• 1970’s - cultivated and animal models developed
• 1980’s discovery of antigenic variation

Image modified from Cutler, Clinical Microbiology and Infection, 2009

Louse-borne: relapsing fever (2)

Etiological agent: Borrelia recurrentis

Transmission cycle
• Between humans and lice:
 ➢ Lice ingest blood meal from bacteremic host
 ➢ B. recurrentis mostly destroyed in the louse’s gut, but few persist and move to the hemocoel
 ➢ Lice are transmitted between individuals via clothing or bedding
 ➢ Subsequent biting of new host results in scratching; thus facilitating fecal transmission of B. recurrentis

Image modified from Cutler, Clinical Microbiology and Infection, 2009
Summary

- Louse-borne infections
 - Epidemic typhus
 - Trench fever
 - Relapsing fever
- Lice transmitted between people via clothes/bedding
- Agents are transmitted to vertebrates during feeding via fecal transmission
- While less prevalent, important for stressed populations

Outline

- Louse-borne infections
 - Epidemic typhus
 - Trench fever
 - Relapsing fever
- Mite-borne infections
 - Rickettsialpox
 - Scrub typhus
 - General characteristics of mites
 - Species of medical importance
 - Disease-causing agents

Mites: general characteristics

- Typically less than 1 mm long
- Abdomen joined to cephalothorax, no segmentation
- Chelicerae for tearing or piercing in parasitic species
- Feeding chiggers inject a salivary fluid which dissolves the host's cells, then suck up the liquefied tissue; Within a few hours, small, reddish, intensely itching welts appear
- These bites may continue to itch for several days up to two weeks after the chigger is dislodged
- Inhabit areas of tall grass, associated with wet spots, ponds and stream banks, and forest underbrush
- Larvae attach to passing animals; On humans, typically move to a part of body that is constricted, e.g., waistband
Epidemic Typhus and Other Louse- and Mite Borne Infections
Kevin R. Macaluso Ph.D

Mite: life cycle

Image by Rebecca L. Nims, from Medical and Veterinary Entomology Eds. Mullen and Durden

Mites: classification

Class: Arachnida
Subclass: Acari
Order: Prostigmata

Source: http://tolweb.org/tree/phylogeny.html

Mites: species of medical importance

- Free-living, predaceous and parasitic – ectoparasites
- Indirect and direct effects on humans and animals:
 - Dermatitis or other tissue damage
 - Cause of strong allergic reactions
 - Loss of blood
 - Transfer of pathogenic agents

The screen versions of these slides have full details of copyright and acknowledgements
Mites: disease-causing agents

- Rickettsia
- Orientia

Mite-borne: rickettsialpox

History:
- First described in 1946 – Queens epidemic
- Characterization – from isolation of the agent to published description as causative agent of disease was 5 months
- 2001-2003 – an increase in cases due to increased laboratory conformation

Etiological agent: Rickettsia akari

Image courtesy of Christopher Faddis
Mite-borne: rickettsialpox (3)

Vector: *Liponyssoides* mite vector

Image courtesy of Christopher Paddock

Mite-borne: rickettsialpox (4)

Transmission cycle: House mite (vector) → House mouse (maintenance host) → Human

Image modified from Azad and Beard, EID, 1996

Mite-borne: scrub typhus

History:

Image taken from medscape.com

The screen versions of these slides have full details of copyright and acknowledgements.
Mite-borne: scrub typhus (2)

Etiological agent: *Orientia tsutsugamushi*

Infection: *Orientia tsutsugamushi*

Scrub typhus: eschar

Image courtesy of Michael Groves
Scrub typhus: eschar and rash

Images courtesy of Michael Groves

Mite-borne: scrub typhus

Vector: Trombiculid mites

Images courtesy of Michael Groves
Image by Rebecca L. Nims, from Medical and Veterinary Entomology Eds. Muller and Durham

Scrub typhus: transmission cycle
Scrub typhus: transmission cycle (2)

Image courtesy of Michael Groves

Scrub typhus: mites on rodents

Images courtesy of Michael Groves

Scrub typhus: mite habitat

Images courtesy of Michael Groves
Epidemic Typhus and Other Louse- and Mite Borne Infections
Kevin R. Macaluso Ph.D

Scrub typhus: mite habitat (2)

Image courtesy of Michael Groves

Scrub typhus

Image courtesy of Michael Groves

Scrub typhus (2)

Image courtesy of Michael Groves

The screen versions of these slides have full details of copyright and acknowledgements
Epidemic Typhus and Other Louse- and Mite Borne Infections
Kevin R. Macaluso Ph.D

Summary

• Mite-borne infections
 ➢ Rickettsialpox
 ➢ Scrub typhus

• Only larval ‘chigger’ stages are parasitic
• Agents are transmitted to vertebrates during feeding via salivary secretions

Acknowledgements

Abdu F. Azad
Michael Groves
Walairat Pornwiroon
Piyanate Sunyakumthorn
Literature references

Louse-borne diseases
- Bechah Y et al., 2008; Epidemic typhus; Lancet Infect Dis. 8:417-26

Mite-borne diseases
- Kelly DJ et al., 2009, Scrub typhus: the geographic distribution of phenotypic and genotypic variants of Orientia tsutsugamushi, Clinical Infect Dis. 48(3): S203-30