Myiasis - lecture plan

- Introduction
- Defining myiasis
 - What is and what is not myiasis
 - Dermal and subdermal myiasis
 - Wound or traumatic myiasis
 - Accidental myiasis
- Evolution of parasitism
- Control and intervention strategies
 - Chemical control
 - Models of fly development
 - Climate mapping
 - Predictors of risk of fly strike, e.g. Strikewise
- Larval therapy
- Forensic entomology

Agents of myiasis

- Biology and life-histories of the main groups of myiasis flies
 - Calliphoridae
 - Blowflies
 - Screwworm flies
 - Bird blowflies
 - Calliphorids
 - Sarcophagidae
 - Sarcophagids
 - Wohlfahrtia sp.
 - Oestridae
 - Oestrids
 - Gasterophilids
 - Hypoderminids
 - Cuetrebrids
 - Others

The screen versions of these slides have full details of copyright and acknowledgements.
The importance of myiasis-causing flies

• As pests of livestock (and occasionally humans), i.e. as agents of myiasis
• As pests of wild animals
 – Myiasis-causing flies can significantly affect condition, fecundity, grazing behavior, and survival of wild animal populations
• As forensic indicators of time of death
• In medical applications - larval therapy

Defining myiasis

• Agents of myiasis include:
 – Bot and warble flies - Oestridae
 – Flesh flies - Sarcophagidae
 – Blowflies - Calliphoridae
 – Other Diptera - Muscidae, Syrphidae, etc.
• Infestation of a living animal by dipterous larvae
 (Hope, 1840; Zumpt, 1965)
Classification of myiasis 1: according to the anatomical position in or on the host

<table>
<thead>
<tr>
<th>Category</th>
<th>Location</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutaneous</td>
<td>Skin surface</td>
<td></td>
</tr>
<tr>
<td>Intracutaneous</td>
<td>Subcutaneous tissue</td>
<td></td>
</tr>
<tr>
<td>Subcutaneous</td>
<td>Deep subcutaneous tissues</td>
<td></td>
</tr>
<tr>
<td>Perforating</td>
<td>Skin and muscle</td>
<td></td>
</tr>
<tr>
<td>Perforating-necrotic</td>
<td>Skin and muscle, causing tissue death</td>
<td></td>
</tr>
<tr>
<td>Perforating-tissue destruction</td>
<td>Skin and muscle, causing significant tissue damage</td>
<td></td>
</tr>
</tbody>
</table>

Note: the division of myiasis into five rows is based on the grouping of Zumpt (1965) in the first column; the second and third columns show the comparable groupings of Bishop (see Patton, 1922) and the modification of these by James (1947). Re-drawn from Hall http://www.fao.org/DOCREP/U4220T/U4220T07.HTM

Classification of myiasis 2: according to the parasitic relationship of the Diptera with the host

<table>
<thead>
<tr>
<th>Category</th>
<th>Relationship</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>External</td>
<td>Eggs laid outside the host</td>
<td></td>
</tr>
<tr>
<td>Internal</td>
<td>Eggs laid inside the host</td>
<td></td>
</tr>
<tr>
<td>Intracuticular</td>
<td>Eggs laid beneath the skin</td>
<td></td>
</tr>
<tr>
<td>Perforating</td>
<td>Eggs laid in or beneath the skin, causing damage</td>
<td></td>
</tr>
<tr>
<td>Necrotic</td>
<td>Eggs laid in or beneath the skin, causing necrosis</td>
<td></td>
</tr>
</tbody>
</table>

Sources: Patton (1922); Smart (1943); Zumpt (1965); Kettle (1984); Re-drawn from Hall: see http://www.fao.org/DOCREP/U4220T/U4220T07.HTM

Myiasis-causing flies

Blowflies - Calliphoridae

Sources: Patton (1922); Smart (1943); Zumpt (1965); Kettle (1984); Re-drawn from Hall: see http://www.fao.org/DOCREP/U4220T/U4220T07.HTM
Myiasis-causing flies: Lucilia bufonivora

Myiasis-causing flies: blowflies & screwworm flies

Blowflies and screwworm flies: economic impact

• Up to 80% of all British sheep farms have been documented as being affected by myiasis caused by the blowfly Lucilia sericata, with a mortality rate of around 2%
• In some other areas of Europe, mortality rates of up to 20-30% have also been reported
Typical blowfly lifecycle
One complete lifecycle of all stages of the parasite

Myiasis-causing flies: furuncular larvae

Myiasis-causing flies: sanguinivorous larvae

The screen versions of these slides have full details of copyright and acknowledgements
Myiasis-causing flies
Flesh flies - Sarcophagidae

Myiasis-causing flies (2)
Flesh flies - Sarcophagidae

Myiasis
Bot and warble flies - Oestridae

The screen versions of these slides have full details of copyright and acknowledgements
Vector-borne Diseases: Myiasis in Humans and Other Animals, Including Applied Applications in Larval Therapy & Forensic Entomology

Dr. Jamie Stevens

Oestridae warble fly - Hypoderma lineatum

Oestridae - various

Myiasis

The screen versions of these slides have full details of copyright and acknowledgements
Evolution of parasitism in myiasis-causing flies

Evolution of myiasis

Contrasting breeding strategies can influence myiasis control strategies

Somerset, England
New South Wales, Australia
Myiasis control: traps, targets and insecticides

Myiasis control: docking, crotchting and mulesing

Control: disease ecology
• Strike, coupled with worm damage, notably dehydration and blood loss, can be particularly severe in young lambs
Vector-borne Diseases: Myiasis in Humans and Other Animals, Including Applied Applications in Larval Therapy & Forensic Entomology
Dr. Jamie Stevens

Distribution of New World screwworm fly
Cochliomyia hominivorax

- SIT relies on the widespread release of huge numbers of sterile males of the target pest species
- The sterile males then find and mate with fertile females in the field and the resulting egg batches are non-viable

Reproduced from *A Manual for the Diagnosis of Screw-worm Fly*, J.P. Spradbery, 1991, CSIRO, Canberra, Australia

Progressive shift of eradication zones in the screwworm SIT programme in North and Central America

1957 - 1959
1962
1966
1982 - 1985
1972 - 1981
1983
1996
1986 - 1991
1995
1999
1994
1998 - 2001
2001

Reproduced from Dr A. S. Robinson, FAO/IAEA, Vienna

Climate modelling to predict potential spread of Old World screwworm fly (*Chrysomya bezziana*) in Australia

The screen versions of these slides have full details of copyright and acknowledgements
Climate data, models and control

- Temperate regions:
 Flies re-emerge in spring after winter diapause. Successive generations breed in discrete cohorts giving rise to cycles in fly numbers.

- Subtropical/tropical regions:
 No cold weather, no diapause; little fluctuation in fly numbers.

Larval therapy

- Reports of blowfly larvae cleansing wounds span many cultures over several centuries.

- The modes of action of 'wound-healing' larvae may be broadly categorized into three main areas:
 - Debridement
 - Disinfection
 - Stimulation of wound granulation and repair

Comparison of blowfly lifecycles

- The relatively well-defined succession of insects occurring on a dead body can be exploited to estimate a measure of time since death – often referred to as the minimum post mortem interval or simply 'minimum PMI'.
Acknowledgements

I am grateful to numerous friends and colleagues for granting me permission to use some truly exceptional images, without which this seminar would have been a very dull affair; in particular, thanks go to:

- Dr Martin Hall, Dept. of Entomology, The Natural History Museum, London, UK
- Dr Doug Colwell, Agriculture and Agri-Food Canada, Lethbridge, Canada
- Professor Domenico Otranto, Faculty of Veterinary Medicine, University of Bari, Italy
- Professor Richard Wall, School of Biological Sciences, University of Bristol, UK
- Professor Terry J. Walton, Washington State University, USA
- Dr James Wallman, School of Biological Sciences, University of Wollongong, Australia
- Dr Allen Robinson, FAO/IAEA, Wagramerstrasse, Vienna, Austria

Additional reading: general myiasis

- James, M.T. (1947) The flies that cause myiasis in man; US Dept Agric Misc Publ 631, Washington
- Sabrosky, C.W., G.F. Bennett and T.L. Whitworth (1989) Bird blow flies (Protocalliphora) in North America (Diptera: Calliphoridae), with notes on Palearctic species; Smithsonian, Washington
- Zumpt, F. (1965) Myiasis in Man and Animals in the Old World; Butterworths, London

Additional reading: control and intervention strategies

The screen versions of these slides have full details of copyright and acknowledgements
Additional reading: evolution

Additional reading: larval therapy and forensic entomology

The screen versions of these slides have full details of copyright and acknowledgements.