Evolution of Virulence: Malaria, a Case Study
Prof. Andrew F. Read

The University of Edinburgh
Institutes of Evolutionary Biology & Immunology and Infection Research
http://readgroup.biology.ed.ac.uk/

Lecture outline

- Natural selection on malaria virulence
 - Why are malaria parasites so virulent?
 - Why aren't malaria parasites more virulent?
- Why bother?
 - Possible selective effects of public health interventions
- Other diseases - and a plea

Death or survival

Parasite dose
Parasite genetics
Acquired immunity
Socio-economics
Host genetics

The screen versions of these slides have full details of copyright and acknowledgements
Evolution of Virulence: Malaria, a Case Study
Prof. Andrew F. Read

Malaria parasites in mammalian red blood cells

What selective factors act on parasite virulence?

Benign Lethal
Parasite virulence spectrum

Pathogen fitness function

The screen versions of these slides have full details of copyright and acknowledgements
Evolution of Virulence: Malaria, a Case Study
Prof. Andrew F. Read

In vitro growth rates of *P. falciparum* from Thai patients

What selective factors act on parasite virulence?
What selective factors favour parasite virulence?

A rodent malaria model: *Plasmodium chabaudi*

The screen versions of these slides have full details of copyright and acknowledgements
Evolution of Virulence: Malaria, a Case Study
Prof. Andrew F. Read

Genetic variation in virulence in *P. chabaudi*

Transmission experiments

Virulent strains transmit better
Genetically diverse malaria infections are the norm....

.... do virulent strains have a competitive advantage in hosts?

Testing outcome of in-host competition

Virulent strains out compete less virulent strains

This is true for across a range of clones
- And it is relative virulence that matters

De Roode, Pansini, Bell, Wargo, Hube, Cheesman, Walliker & Read (2005);
Bell, de Roode, Sim & Read (2006)
Evolution of Virulence: Malaria, a Case Study
Prof. Andrew F. Read

What selective factors act on parasite virulence?

- Enhanced infectiousness
- Within-host competition

Parasite virulence spectrum

Benign → Lethal

What selective factors act on parasite virulence?

- Enhanced infectiousness
- Within-host selection

Parasite virulence spectrum

Benign → Lethal
What is maintaining the virulent Thai parasites?

- They compete better within hosts
- They transmit better to new hosts

Uncomplicated malaria
Severe malaria

What selective factors act on parasite virulence?

- Enhanced infectiousness
- Within-host selection
 - Affected by host immunity?
 - Unaffected
 - Enhanced

Benign → Lethal

Parasite virulence spectrum

What factors select against virulent phenotypes?

- Host death
Evolution of Virulence: Malaria, a Case Study
Prof. Andrew F. Read

What factors select against virulent phenotypes?

- Host death
- Vectors
Evolution of Virulence: Malaria, a Case Study
Prof. Andrew F. Read

Do more virulent clones kill more mosquitoes?

No!

Ferguson, Mackinnon, Chan & Read 2003

What factors select against virulent phenotypes?

- Host death
- Vector death
- Host genetic diversity
- Growth vs. reproduction trade-offs
- Limited by host

What selective factors act on parasite virulence?

- Enhanced infectiousness
- Within-host competition

 Parasite virulence spectrum

The screen versions of these slides have full details of copyright and acknowledgements
Evolution of Virulence: Malaria, a Case Study
Prof. Andrew F. Read

Why bother?

Explain variation in disease pathogenicity in nature

Predict direction of virulence evolution when diseases cross to new hosts

Could some public health programs relax selection against virulence?

How does vaccination change selection on parasite virulence?

- Enhanced infectiousness
- Within-host competition
- Host death

Benign Lethal

Parasite virulence spectrum

Could vaccines weaken selection against virulent pathogens?

Vaccines protect virulent pathogens from themselves

Gandon, Mackinnon, Nee & Read 2001, 2003, 2004

The screen versions of these slides have full details of copyright and acknowledgements
Vaccination can promote the evolution of virulence by
- Protecting hosts and hence virulent strains
- Increasing in-host competitive advantage of virulence

- Leaky anti-disease vaccines
 may be evolutionary disasters waiting to happen

- Should aim to stop evolution:
 block infection or transmission

Does virulence evolution occur in response to vaccination?

Myxoma virus virulence in Australia

Data from Fenner & Fantini 1999
Evolution of Virulence: Malaria, a Case Study
Prof. Andrew F. Read

Human diseases?

Diphtheria - US
Diphtheria incidence, mortality rates, and case-fatality ratio in the United States, 1900 to 1996

Diphtheria - India
Widespread vaccination

Clinical diphtheria in Infectious Diseases Hospital, Delhi, 1954-97
From Singh et al., Epidemiol. Infect. (1999)
Detecting any virulence evolution in human diseases will be a serious challenge

- Case fatality rates change (or don't change) for many reasons
- Problem of common garden
- Need proper molecular epidemiology of virulence determinants

For further reading, see:

Mackinnon, M.J. & Read, A.F. 2004; Virulence in malaria: an evolutionary viewpoint; Philosophical Transactions of the Royal Society of London Biological Sciences; 359: 965-985

All references mentioned in this lecture, and updates, are available on http://readgroup.biology.ac.uk/ or in the references cited therein.