Evaluation of the Adult Nervous System in Preclinical Studies

Mark T. Butt, DVM, Diplomate, ACVP
President, Tox Path Specialists LLC
20140 Scholar Drive, Hagerstown, MD 21742
301-845-0719
866-902-0771 (Fax)
240-315-7236 (Mobile)
mbutt@toxpath.net
sbutt@toxpath.net

Nervous systems evaluation

• Do the following
 – Look at the right place
 – At the right times
 – In the right ways

The right place

What else other than pathology is going to be done?
Begin with the end in mind: be prepared to harvest whatever samples might be needed to accomplish your goals

Remember:
- Necropsy, like death itself, is irreversible
More often, neurotoxins kill cells in smaller portions of the brain.

MDMA, Alcohol, MPTP, Meth, Kainic acid, ZNH, MPTP, PCP, Domoic acid, PCP.

This slide was prepared by Dr. Bob Switzer of NeuroScience Associates and is being used with his permission.

Inadequate evaluation of the brain.

For any species, sampling the same number of levels provides comparable representation.

<table>
<thead>
<tr>
<th>Species</th>
<th>Brain length (mm)</th>
<th>Sampling interval (in mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Using 40 samples</td>
<td>Using 60 samples</td>
</tr>
<tr>
<td>Mouse</td>
<td>12</td>
<td>0.30</td>
</tr>
<tr>
<td>Rat</td>
<td>21</td>
<td>0.35</td>
</tr>
<tr>
<td>Monkey</td>
<td>65</td>
<td>1.08</td>
</tr>
<tr>
<td>Dog</td>
<td>75</td>
<td>1.25</td>
</tr>
</tbody>
</table>

A sampling rate of 50-60 levels per brain offers a balance between a reasonable safety assessment and reasonable effort.

This slide was prepared by Dr. Bob Switzer of NeuroScience Associates and is being used with his permission.
Evaluation of the Adult Nervous System in Preclinical Studies
Mark T. Butt

0.32mm spacing between levels is the interval commonly used in R&D when characterizing effects in a rat brain.

This spacing ensures adequate representation of most populations of the brain.

This slide was prepared by Dr. Bob Switzer of Neuroscience Associates and is being used with his permission.

Trimming scheme

- The following stains:
 - Hematoxylin and eosin (H&E) stain: all tissues
 - Neurodegeneration stain: brain, spinal cord, dorsal root ganglia, and cervicothoracic and superior mesenteric ganglion (spinal cord and ganglia staining somewhat optional)
 - Microglial stain: IBA-1
 - Glial fibrillary acidic protein (GFAP) stain: brain and spinal cord
 - Luxol fast blue: for myelin
 - Silver stain: brain and spinal cord and possibly nerves

- Peripheral nerves
 - Longitudinal section: paraffin/GMA and H&E
 - Cross section: Spurr’s (or GMA), toluidine blue following osmium post-fixation (even paraffin following osmium post-fixation can be rewarding)
Evaluation of the Adult Nervous System in Preclinical Studies
Mark T. Butt

Trimming scheme - brain

- Oversized, 2x3 inch slides
 - Usually used if there is an implant on one side of the brain
- Regular size slides
 - When there is no difference between the sides of the brain

The screen versions of these slides have full details of copyright and acknowledgements
Spinal cord

- All prime anatomy of the spinal cord is maintained
- Allows detection of subtle changes in nerve fibers

At the right times...

Multiple time points, including a relatively early time point (2 to 4 days), are necessary to accurately characterize nervous system changes, especially to assess neuronal effects.

Each compound has its own peak opportunity for detectability
Evaluation of the Adult Nervous System in Preclinical Studies
Mark T. Butt

16
• Rat brain treated with MK801
• Arrows: neurons with very subtle vacuolation in the cytoplasm

17
• Rat brain treated with MK801 – 2 days post administration
• Fluoro-Jade B stain allows detection of neuronal necrosis
• When is the right time point?
 – Based on available information
 – Look in a 2-4 day time period

18
Imaging in toxicology studies
Images courtesy of Northern Biomedical Research, Inc. and used with their permission

The screen versions of these slides have full details of copyright and acknowledgements
The right way…

A battery of special stains will ensure a sensitive evaluation of the nervous system

All tissue changes are not created equal

- 95% of what is seen is either normal, an artifactual change (more about artifacts later), autolysis, or an incidental spontaneous change of no significance

Perfusion: why?

Perfusion fixed

Immersion fixed

The screen versions of these slides have full details of copyright and acknowledgements
Evaluation of the Adult Nervous System in Preclinical Studies
Mark T. Butt

Neuronal necrosis stains: why?

Stains – cupric silver

Stains – fluoro Jade B

The screen versions of these slides have full details of copyright and acknowledgements
Evaluation of the Adult Nervous System in Preclinical Studies
Mark T. Butt

IBA STAIN

Reliable way to assess increased microglial activity/microglial activation

Stains – GFAP

- Glial fibrillary acidic protein (GFAP) detections of Astrocytes

Luxol fast blue stain
- Myelin staining (blue)
- Detection of patchy demyelination areas

Classic silver stain
- Staining of filamentous elements

The screen versions of these slides have full details of copyright and acknowledgements
Special procedures example

Thin sections, firm resin embedding, perfusion fixation, glutaraldehyde and osmium post-fixation

The screen versions of these slides have full details of copyright and acknowledgements
Summary – priorities (decreasing importance)

• Look at enough brain/spinal cord/peripheral nervous system
• Look early and often;
 Include a 2 -4 days post-exposure time point;
 Use imaging techniques if possible to increase your time points if applicable
• Look with the right stains to detect subtle changes
 – Neuronal degeneration (cupric silver of floros-Jade)
 – Microglial stains
 – GFAP
 – Silver
 – Luxol fast blue
 – Other
• Use perfusion fixation if possible

Thank you’s and acknowledgements

• Thanks for listening
• Thanks to NeuroScience Associates and Northern Biomedical Research for supplying various slides
• Thanks to all my clients for all their great neuro studies over the years

The screen versions of these slides have full details of copyright and acknowledgements