

Kurt A. Black, Ph.D, DABT

Toxicity Testing of Impurities and Metabolites

Kurt A. Black, Ph.D, DABT

Comparative Biology and Safety Sciences

Amgen Inc.

1

Outline of Presentation

- · Background
- · Impurities
 - Drug substance impurities
 - Genotoxic impurities
 - Residual solvents
 - Drug product degradants
- · Toxicity testing of drug metabolites
- Scope of presentation limited to small molecule pharmaceuticals

2

Background – Impurities and Metabolites

- Primary focus of the toxicology program is to define the safety of the active ingredient
- However, safety aspects of impurities or metabolites can impact potential development and ultimately marketing
 - Viracept® (nelfinavir) removed from the market in Europe due to contamination by a genotoxic impurity
- Goal of this presentation will be to discuss points and strategies to consider during drug development

Kurt	A. Black, Ph.D, DAB I
	-
Impurities	
	4
Impurities – Background	
 Occur in essentially all small molecule active 	
pharmaceutical ingredients (API, drug substance)	
and drug products	
 Provide no therapeutic benefit 	
Potential to cause adverse effects	-
Need to ensure that level of impurity is sufficiently	
safe to administer to humans	
	5
	<u></u>
Types of API Impurities	
Organic impurities	
 Starting materials and intermediates 	
- By-products	
- Degradants	
Residual solvents	
Inorganic impurities	
Metal catalysts	
 European Medicines Agency (EMEA) Committee for Human Medicinal Products (CHMP) guidance docur 	ment
Heavy metals	
Pharmaceutical compendia	
United States and European Pharmacopeia	
Scd Glatos and European i narmacopola	6
	<u> </u>

Kurt A. Black, Ph.D, DABT

Regulatory and Industry Guidance

- International Conference on Harmonisation (ICH)
 Q3A impurities in new drug substances
- ICH Q3B impurities in new drug products
- · Genotoxic impurities
 - CHMP guideline on the limits of genotoxic impurities
 - Industry position paper
- ICH Q3C Impurities: residual solvents

7

Highlights of ICH Q3A (API Impurities) (1)

- Thresholds for reporting, identifying, and qualifying impurities
- · Qualification of impurities
 - Process of acquiring and evaluating data that establishes the biological safety of an impurity
- · Applies at filing of marketing application
- But common practice is to qualify impurities during clinical development
 - Safety of patients in clinical trials

8

ICH Thresholds for Drug Substance (API)

< 2g/day < 2g/day Rumiling Threshold²⁹ 0.29%

0.07%

Tulenti benibun Tührestoiti³ NLOX on L.D.mgress skay irrine (ashichessa is Jours) Qualification Characterist 8.1826 on U.C. was pass day intoke (whichever is learn)

- ¹The amount of drug substance administered per day
- ²Higher reporting thresholds should be scientifically justified
- ³Lower thresholds can be appropriate if the impurity in unusually toxic

Kurt A. Black, Ph.D, DABT

Highlights of ICH Q3A (API Impurities) (2)

- Level adequately tested in preclinical safety studies would be considered qualified
- Impurities that are significant animal and/or human metabolites are generally considered to be qualified
- A level (%) of a previous impurity at a higher level than previously qualified <u>can be justified based on actual</u> <u>dose administered</u> in previous toxicology studies
 - Compare $\mu g/kg$ dose of impurity in animals to clinical dose of impurity

10

Qualification Studies Recommended in ICH Guidance

- · One in vivo repeat dose toxicity study
 - Two weeks to 3 months in duration
 - Most appropriate species
- · In vitro genetic toxicity studies
 - Ames test
 - Chromosome aberration study
- Conduct studies on the API containing a representative amount of the impurity
- Studies using the isolated impurity can also be considered
- Studies must be compliant with Good Laboratory Practices

11

Strategies for In Vivo Qualification

- Use new lot of API with level to be qualified on ongoing or planned toxicity studies
 - Most efficient approach since incorporates qualification into ongoing program
 - Timeline and compound supply considerations
- Conduct dedicated repeat-dose qualification study in one species
 - May be necessary to minimize delays to clinical program
 - Preferred approach if want to qualify high levels by using API spiked with impurity

-	 	

Kurt A. Black, Ph.D, DABT

In Vivo Qualification Decision Scheme

- · Known impurity present in previous GLP toxicity studies
 - If level (%) higher than in previous batches used in toxicity studies
 - Qualify in vivo if
 - Level exceeds ICH qualification limit

AND

- Projected clinical dose (µg/kg) of impurity exceeds dose of impurity at NOAEL in previous toxicity studies
- · New impurities
 - Qualify in vivo if level exceeds ICH threshold

13

Decision Scheme for <i>In Vivo</i> Qualification of API Impurities		
Defermine imports Tracent in regard Tracent in re		
Land		
Na Superior		
We follow action country to the country to report the country to r		
Yes		
* If the impurity level exceeds 1 mg total daily intake then the threshold is also exceeded; For daily dose > 2g, the qualification threshold is 0.05%		
14		

Alternatives to Impurity Qualification

- Reprocess API to reduce impurity to acceptable level
 - Requires additional resources and time
- · Limit clinical dose to control exposure to impurity
 - May limit ability to demonstrate efficacy or explore safety and tolerability

KI	urt A. Black, Ph.D, DAB I
Genotoxic Impurities	16
Genotoxic Impurities – Background	d
 Many starting materials and intermediates used in pharmaceutical synthesis are genotoxic In many cases, not feasible to avoid their use May be present in API as impurities Increasing concern about risk posed by exposur to genotoxic impurities 	se
Regulatory Guidance on Genotoxic Impu	
 ICH Q3A Qualification threshold requiring genotoxicity testi is 0.15% for most drugs Lower thresholds may be appropriate for "unusually toxic" impurities Concerns about risk of exposure to genotoxic impurities 	
- Concerns about risk of exposure to genotoxic important present at levels less than qualification limit CHMP Guideline on The Limits of Genotoxic Impuriti	

Kurt A. Black, Ph.D, DABT

CHMP Guidance on the Limits of Genotoxic Impurities (1)

- Concept of Threshold of Toxicological Concern (TTC)
- TTC = maximal lifetime daily intake of a genotoxic impurity at which acceptable increased risk for cancer exists
 - For pharmaceuticals = 1 x 10⁻⁵
 - TTC = 1.5 μg/day
- · A compound-specific limit should be used if sufficient data exist
 - Rodent carcinogenicity results
- Applies at marketing application approval or change to an existing approved application

19

EMEA Guidance on the Limits of Genotoxic Impurities (2)

- · Higher levels acceptable for certain conditions
 - Short-term exposure not defined in original guidance
 - Life-threatening conditions
 - Life-expectancy < 5 years
 - Human exposure much greater from other sources

20

Industry Position Paper on Genotoxic Impurities

- Multi-disciplinary pharmaceutical industry group formed to address issue of genotoxic impurities
 - Müller et al., Regul Toxicol Pharmacol 44: 198-211, 2006
- Introduced concept of staged TTC
 - TTC dependent upon duration of exposure
 - · Higher limit for shorter duration
 - Apply during all phases of development
- Provided classification scheme and decision tree based on genotoxic potential of impurities

^	
_	

Kurt A. Black, Ph.D, DABT

Classification of Impurities (Müller et al.)

- · Class 1: known genotoxic carcinogens
 - Calculate compound-specific limit using cancer risk assessment models and adjust for duration of exposure
- Class 2: known to be genotoxic but with unknown carcinogenic potential
 - Use generic staged TTC
- Class 3: alerting structure, unrelated to parent drug and of unknown genotoxic potential
 - Use generic staged TTC or run Ames test to confirm
- Class 4: alerting structure, related to parent API
 - Assume results for parent extrapolate to impurity
- · Class 5: No alerting structure or indication of genotoxic potential
 - Treat as routine impurity
 - Follow ICH guidance to determine qualification need

22

CHMP Question and Answer Document (2008)

- · Clarified 2006 guidance document
- Endorsed concept of staged TTC during clinical development

			Duration of	of Exposure		
		>Single dose	>1 month to	>3 months to	>6 months to	≥12 months or
	Single Dose	to ≤1 month	≤3 months	≤6 months	≤12 months	at marketing
Staged TTC	120 µg	60 µg	20 µg	10 µg	5 µg	1.5 µg

 Values are generally lower than those recommended by Müller et al.

23

Examples – Limits Based on Genotoxic Potential

- · Mesityl oxide
 - Not genotoxic
 - Treat as routine impurity according to ICH guidance
- 4-Aminophenol
 - Genotoxic with unknown carcinogenicity
 - Use staged TTC
- Hydrazine
 - Genotoxic rodent carcinogen
 - Calculate compound specific limit staged for duration
 - USEPA IRIS database provides limits for environmental exposure in drinking water
 - $\,-\,$ Convert to $\mu g/\text{day}$ and stage for duration of exposure

	_
•	
- 2	-
•	

Kurt A.	Black, Ph.D, DAB I
Assessment of Genotoxic Potential of Impurities	
If structure identified Literature review Expert, e.g., chemist, review for structural alerts In silico structure-activity relationship prediction of mutagenicity Multicase, DEREK Potentially conduct genotoxicity testing If structure unknown Assume that impurity is potentially genotoxic Potentially test API with impurity level	
Decision Scheme for Genotoxicity Qualification Studies	
If level > than ICH qualification limit	
Ames test and in vitro chromosome aberrations study	
If level ≤ ICH qualification limit	
Structure known and contains alert	
Conduct Ames test	
Structure known and contains no alert	
No further testing	
Structure unknown and at level > ICH identification limit	
Conduct Ames test In vitro chromosome aberration study if structural class is associated with clastogenesis or poorly detected in Ames test	
Limiting clinical exposure to ≤ staged TTC is an alternative to conducting qualification studies 26	
Compound to Use in Genotoxicity	
Qualification Studies	
API with impurity level	
 May result in specification for impurity set at level present as tested 	
API spiked with impurity	
 Need to test impurity at level ≥ 250 µg in Ames test to achieve sufficient sensitivity 	
• Kenyon <i>et al.</i> , 2007	

27

• 250 μg = 5% at limit dose of 5000 μg in Ames test - Risk of repeating previous negative test on API

- Time and resources to synthesize - Will have its own impurity profile

· Neat impurity

Kurt	A. Black, Ph.D, DAB I
Residual Solvents	28
Residual Solvents	
 Definition Volatile organic chemicals used in the manufacture of drug substances, products and excipients Not completely removed by manufacturing process Necessary component in many pharmaceutical manufacturing processes Provide no therapeutic benefit 	29
ICH Guidance Q3C – Residual Solvents	
 Classifies residual solvents according to safety characteristics 	
 Provides acceptable upper limits for levels of residual solvents 	
Guidance document states that it does not apply to clinical development stage	
But industry practice and regulatory agency expectations are that the limits are generally met during this stage	
	30

- Hexane PDE = 2.9 mg/day

- Hexane concentration limit = 290 ppm

Toxicity Testing of Impurities and Metabolites

Kurt A. Black, Ph.D, DABT

ICH Q3C Residual Solvents Classes (1) - Solvents to be avoided - Known or strongly suspected human carcinogens or possess other unacceptable toxicity Benzene - Environmental hazards • 1,1,1-Trichloroethane - Limits are generally at the very low ppm level Class 2 - Solvents to be limited - Nongenotoxic rodent carcinogens, teratogens, neurotoxins, other significant toxicities - Acetonitrile, ethylene glycol 31 ICH Q3C Residual Solvents Classes (2) · Class 3 - Solvents with low toxic potential Limits set at 0.5% (5000 ppm) - Pragmatic limit based on common manufacturing capabilities - Acetone, ethanol · Solvents with inadequate toxicological data - Manufacturer must justify residual levels - Isopropyl ether, methylisopropyl ketone 32 Limits for ICH Class 2 Solvents (1) • Permissible Daily Exposure (PDE) - Daily intake of a residual solvent in a pharmaceutical product that is considered acceptable (mg/day) - Based on results from toxicology studies · Guidance lists acceptable concentrations at or below which no justification for levels are required - Based on PDE and assumed dose of pharmaceutical of 10 g/day

Kurt A. Black, Ph.D, DABT

Limits for ICH Class 2 Solvents (2)

- May be able to justify higher concentrations if daily dose of drug is less than 10 g/day and PDE (mg/day) for solvent not exceeded
 - Could be particularly useful approach early in drug development process
 - May not be universally accepted by all regulatory agencies
 - Efforts should be made to lower levels as much as practical
 - Ultimate goal should be to meet concentration limits

34

Drug Product Degradants	Drug	Product	Degra	dants
--------------------------------	------	----------------	-------	-------

35

Drug Product Degradants

- Drug product is the formulated dosage form containing the API and excipients
- · Drug product impurities
 - Degradants of API
 - Reaction products of API and excipients
 - Reaction products of API and container closure system
- ICH limits for impurities in drug product are higher than those for API (See ICH Q3B)
- · Residual solvents
 - Source may be from API, excipients or both
- · Difficult to reduce levels in already formulated drug product

1	2

Kurt A.	Black, Ph.D, DAB I
Impurities Summary	
 Impurities occur routinely in API Provide no benefit Qualification is the process of establishing the safety of impurities Genotoxic impurities need special consideration Reducing an impurity to an acceptable level or limiting its exposure to humans are alternatives to qualification 	
Toxicity Testing of Metabolites	
38	
Metabolites – Outline	
 Background Metabolite considerations during drug candidate selection Safety assessment of disproportionate human metabolites 	
Case studies Summary	

Kurt A. Black, Ph.D, DABT

Metabolites - Background

- Drug metabolites are compounds that are formed by enzymatic changes to the drug molecule
- Metabolites of drugs are commonly formed by human and animal systems
- Metabolites may contribute to the pharmacology and/or toxicity of the parent drug
- Important to assess the safety of metabolites during drug development

40

Metabolites - Definitions (1)

- · Phase 1 metabolite
 - Metabolite formed by direct change to the parent drug molecule
 - Oxidation, reduction, hydrolysis, cleavage
 - Usually catalyzed by various CYP enzymes
- · Phase 2 metabolite
 - Metabolite formed by addition of endogenous substance to parent drug molecule or Phase 1 metabolite
 - Drug conjugates
 - Glucuronides, sulfates, etc
 - Catalyzed by various transferases

41

Metabolites - Definitions (2)

- · Active metabolite
 - Metabolite that shares primary pharmacologic action of parent drug
- · Reactive metabolite
 - Metabolite that may covalently modify cellular macromolecules
- · Unique metabolite
 - Drug metabolite that is formed by only a single species
- Disproportionate human metabolite (FDA 2008)
 - Unique human metabolite
 - Or occurs at higher plasma concentrations in humans than in animals

_	
_	ΙΞ.

2			

Kurt A. Black, Ph.D, DABT

Toxicity Assessment of Metabolites

- · Truly unique human metabolites are rare
- Toxicity studies on the parent drug are usually sufficient to assess the toxicity of metabolites
- Drug conjugates are usually considered to be non-toxic and separate evaluation is not justified
 - Exception: reactive acyl glucuronides
- Toxicity of some metabolites <u>may</u> need to be assessed separately from parent drug
 - Disproportionate human metabolites
 - Metabolites containing structural alerts for genotoxicity

43

Metabolite Considerations During Drug Candidate Selection

- During lead optimization, metabolism of drug molecule in various species is compared
 - Liver microsomes, slices, hepatocytes
 - Limited in vivo characterization in animals
- Each human metabolite should be formed in at least one of the animal species selected for the toxicology assessment
 - Presence in only non-rodent species has implications for genotoxicity and reproductive toxicity assessments
- Covalent protein binding assays to assess potential for formation of reactive metabolites

44

Toxicity Assessment of Metabolites – Industry Position Paper

- Defined issues and recommended approaches to safety assessment of metabolites during different phases of drug development
- · Defined major human metabolite
 - Occurs at >25% of circulating <u>drug-related material</u> after <u>single dose</u>
 - Focus of safety assessment

Baillie TA et al., Toxicol Appl Pharmacol 182: 188-196, 2002

1	5
•	J

Kurt A. Black, Ph.D, DABT

Metabolites - Regulatory Guidance

- US FDA Guidance on Safety Testing of Drug Metabolites (2008)
 - Provided recommended approaches to assessing safety of metabolites
 - Defined disproportionate human metabolite
 - · Occurs only in humans
 - Or present in humans at higher plasma concentration than in animals used in toxicology program

4	
л	50
-	- 10

FDA Guidance - General Considerations

- If level of human metabolite occurs in toxicology species at equivalent or higher levels, studies on parent drug considered sufficient
- · Drug conjugates generally do not need further assessment
- Disproportionate metabolites occurring at ≤10% of <u>parent</u>
 <u>drug</u> exposure <u>at steady state</u> do not need further testing
- If separate testing of metabolite needed, should be completed before large scale clinical trials
- Toxicity studies should be conducted by the same route as for parent drug

47

FDA Guidance – Recommended General and Reproductive Toxicity Studies

- · General toxicity
 - Duration should follow ICH M3 guidance
 - Systemic exposure at least comparable to that in humans
 - One or two species?
- · Reproductive toxicity studies
 - Embryo-fetal development toxicity study
 - Fertility and peri-postnatal toxicity studies on a case by case basis

A	•
4	
_	•

Kurt A	. Black, Ph.D, DABT
FDA Guidance – Recommended Genotoxicity and Carcinogenicity Studies	
 Genotoxicity Ames test In vitro chromosomal aberrations test If either test positive or equivocal, complete the standard battery Carcinogenicity Drugs to be administered ≥6 months Single species 	
49	9
Considerations for Direct Toxicity Testing of Metabolites • May be difficult to synthesize metabolite • Metabolite may not be stable when administered – GI tract • Metabolite may have different pharmacokinetics when administered directly than when formed endogenously – Toxicity profile could be different – May not be relevant to safety assessment of drug	
Toxicity Assessment of Active Human Metabolites	
Generally, studies on parent drug sufficient to assess	
safety of active human metabolites – If disproportionate, then previous considerations	
would apply	
 If expected to contribute significantly to pharmacologic effect in humans 	
 Consider monitoring both parent drug and active metabolite in toxicity studies 	

Kurt A. Black. Ph.D. DABT

Nuit A.	DIACK, PII.D, DAD I
Case Studies – Metabolites 52	
Metabolite Case Study 1 Acyl Glucuronide	
 Phase 1 project Acyl glucuronide was major metabolite in human plasma Much lower levels in rat plasma, but large amounts formed and excreted in bile 	
 Levels in monkey plasma approximated human levels Conclusion Toxicity studies on parent drug considered sufficient to assess safety of metabolite 	
53	
Metabolite Case Study 2 - Major, Active Metabolite	
Phase 1 project M1 identified as a major, potitive metabolite in elipical study.	
M1 identified as a major, active metabolite in clinical study Not measured in initial GLP toxicity studies	
Subsequently assayed stored, frozen plasma samples from toxicology studies for M1	
Exposure to M1 higher in animals than in humans Conductions	
Conclusions Toxicity studies on parent drug sufficient to assess metabolite	
Include toxicokinetics of M1 on future toxicity studies	
54	

Kurt A. Black, Ph.D, DABT

Metabolite Case Study 3 - Metabolite with Structural Alert (1)

- · Lead optimization phase
- Metabolite with structural alert for mutagenicity identified in human and animal systems in vitro
- · Metabolite circulated in animals at levels higher than parent
- · Genotoxicity assessment
 - Metabolite not made by rat S9
 - Ames test on parent did not test mutagenic potential of metabolite
 - Conducted Ames test on metabolite
 - Results = negative
 - Conducted rat bone marrow micronucleus on parent and measured metabolite in plasma
 - · Result = negative with high circulating levels of metabolite

55

Metabolite Case Study 3 - Metabolite with Structural Alert (2)

- Exposures to metabolite were high in preliminary toxicity studies in rats and monkeys
 - Exposure ~1x to 20x compared to that of parent
- · Conclusion
 - Metabolite did not pose a genotoxic risk
 - Toxicology studies on parent drug sufficient to assess safety of metabolite
 - Compound suitable for development
 - Measure plasma metabolite concentrations in toxicology studies

56

Toxicology Testing of Metabolites - Summary

- In most cases, toxicity studies of parent drug sufficiently assess safety of metabolites
- It is usually not necessary to quantify exposure to metabolites on toxicity studies of parent
- Safety assessment of disproportionate or active metabolites needs to be addressed on a case by case basis
 - May need to quantify exposure to metabolite in toxicity studies
 - May need to conduct separate studies on metabolite
 - Seek regulatory agency concurrence on strategy

_	
۰,	. 4

1	g

Kurt A. Black, Ph.D, DABT

Summary - Impurities and Metabolites

- Impurities and metabolites of small molecule drugs occur commonly
- It is important to assess the safety of impurities and metabolites during drug development
- Regulatory agency guidances and industry position papers can be used as a framework to design toxicity testing strategies
- Each issue related to impurities and metabolites should be addressed on a case by case basis

58

Acknowledgments

- · Jeanine Bussiere
- Roderick Bunch
- · David Hovland
- Kim Li
- Stacie Wild
- · Gary Skiles

59

References - Impurities (1)

- CHMP, Guideline on the Limits of Genotoxic Impurities. 2006 Available at:
 - http://www.emea.europa.eu/pdfs/human/swp/519902en.pdf
- CHMP, Question & Answers on the CHMP Guideline on the Limits of Genotoxic Impurities. 2008. Available at: http://www.emea.europa.eu/pdfs/human/swp/43199407en.pdf
- CHMP, Guideline on the Specification Limits for Residues of Metal Catalysts or Reagents. 2008. Available at: http://www.emea.europa.eu/pdfs/human/swp/444600enfin.pdf
- ICH, Guidance for Industry. Q3A(R2). Impurities in New Drug Substances. 2008. Available at: http://www.fda.gov/cder/guidance/7838fnl.pdf

_	-	_
~	4	
_	E	
_	ч	

Kurt A. Black, Ph.D, DABT

References – Impurities (2)

•	ICH, Guidance for Industry. Q3B(R2). Impurities in New Drug Products.
	2006. Available at:

http://www.fda.gov/cder/quidance/7385fnl.pdf

- ICH, Guidance for Industry. Q3C. Impurities: Residual Solvents. 1997 Available at: http://www.fda.gov/cder/guidance/Q3Cfnl.pdf
- Jacobson-Kram D and McGovern T, Toxicological overview of impurities in pharmaceutical products. Advanced Drug Delivery Rev 59: 38-42, 2007
- Kenyon MO et al., An evaluation of the sensitivity of the Ames assay to discern low-level mutagenic impurities. Regul Toxicol Pharmacol 48: 75-86, 2007
- Müller L et al., A rationale for determining, testing and controlling impurities in pharmaceuticals that possess potential for genotoxicity.
 Regul Toxicol Pharmacol 44: 198-211, 2006

61

References – Metabolites

- Baillie TA et al., Drug metabolites in safety testing Toxicol Appl Pharmacol 182: 188-196, 2002
- Evans, DC et al., Drug-protein adducts: An industry perspective on minimizing the potential for drug bioactivation in drug discovery and development. Chem Res Toxicol 17: 3-16, 2004
- ICH, Guidance for Industry. M3. Nonclinical Studies for the Conduct of Human Clinical Trials for Pharmaceuticals; Available at: http://www.fda.gov/cder/quidance/1855fnl.pdf
- US FDA, Guidance for Industry. Safety Testing of Drug Metabolites. 2008
 Available at: http://www.fda.gov/cder/guidance/6897fnl.pdf
- Prueksaritanont T, et al., Complicating factors in safety testing of drug metabolites: Kinetic differences between generated and preformed metabolites. Toxicol Appl Pharmacol 217: 143-152, 2006

62

