Mouse Models to Investigate Cell Cycle and Cancer

Prof. Philipp Kaldis

Institute of Molecular and Cell Biology (IMCB)
Cell Division and Cancer Laboratory, Proteos 3-09
Singapore 138673

Crystal structure of Cdk2/ cyclin A

Mouse Models to Investigate
Cell Cycle and Cancer
Prof. Philipp Kaldis

Cyclin expression: periodicity

G1 S G2 M

The screen versions of these slides have full details of copyright and acknowledgements
Mouse Models to Investigate
Cell Cycle and Cancer
Prof. Philipp Kaldis

Cdk2
- Binds to Cyclin E, A, B
- Activity peaks in S phase
- Major target of p27
- Phosphorylates Rb and other targets
- Can replace yeast Cdk1
- Essential for DNA replication
- Inactivation arrest cells in G1

Cdk2 is important (essential?)
regulator of S phase

Cyril Berthet
Eiman Aleem

Cdk2^-/- knockout mice

Cdk2 knockout mice are viable!

The screen versions of these slides have full details of copyright and acknowledgements
Mouse Models to Investigate Cell Cycle and Cancer
Prof. Philipp Kaldis

Atrophy in testis of Cdk2−/− mice

Absence of oocyte development in Cdk2−/− mice

Expression of cell cycle regulators in mouse tissues
Kinase activity and Cdk/cyclin complexes in spleen extract

Growth defect in Cdk2⁻/⁻ mouse embryo fibroblasts

Cdk complexes and activity in mouse embryonic fibroblasts

The screen versions of these slides have full details of copyright and acknowledgements
Mouse Models to Investigate Cell Cycle and Cancer
Prof. Philipp Kaldis

16

Cdk2-/- MEF analysis after starvation

17

Cdk activity in synchronized MEFs

18

Delayed immortalization in Cdk2-/- MEFs
Summary

- Cdk2 is essential for meiosis but not mitosis
- Cdk2-/- MEFs display growth defects
- Which genes/ proteins compensate Cdk2 function?

Cdk2 is not an essential gene in the mitotic cell cycle

The Retinoblastoma (Rb) protein pathway

- Cdk1, cyclin A, Cdc25, Cyclin E, Cdk6, etc.
Cyril Berthet

\[Cdk2^{-/-} Cdk4^{-/-} \]
double knockout mice

Developmental Cell 2006

Cdk2\(^{-/-}\)Cdk4\(^{-/-}\) mutants die around E15

WT DKO WT DKO WT DKO

Heart defects in Cdk2\(^{-/-}\)Cdk4\(^{-/-}\) embryos

Wild type

\[Cdk2^{-/-} Cdk4^{-/-} \]
In vivo proliferation in Cdk2\(^{-/-}\)Cdk4\(^{-/-}\) embryos

- Wild type (WT)
- DKO (DKO)
- BrdU Liver

Hypophosphorylated Rb leads to decreasing expression of Cdk1 and cyclin A

- E13.5 E14.5 E16.5
- E13.5 E14.5 E16.5
- Cdk2
- Cdk4
- Cdk6
- p27
- pRb
- pRb\(^{378}\)
- E2F1

Cdk2\(^{-/-}\)Cdk4\(^{-/-}\) MEFs display impaired proliferation

- P2 MEFs
- P4 MEFs
Mouse Models to Investigate Cell Cycle and Cancer
Prof. Philipp Kaldis

S phase entry defect in Cdk2^{-/-}Cdk4^{-/-} MEFs

Rb phosphorylation in Cdk2^{-/-}Cdk4^{-/-} MEFs

E2F target gene expression in Cdk2^{-/-}Cdk4^{-/-} MEFs

The screen versions of these slides have full details of copyright and acknowledgements.
Senescence in Cdk2\(^{-/-}\)Cdk4\(^{-/-}\) MEFs

SA-β-galactosidase staining

- P2: WT 14 ± 4%, DKO 29 ± 5%
- P4: WT 36 ± 7%, DKO 77 ± 10%

HPV-E7 neutralizes Rb and rescues Cdk2\(^{-/-}\)Cdk4\(^{-/-}\) phenotype

- HPV-E7 mutants cannot rescue Cdk2\(^{-/-}\)Cdk4\(^{-/-}\) phenotype

The screen versions of these slides have full details of copyright and acknowledgements
Summary: Cdk2−/−Cdk4−/−

- DKO die due to heart defects
- Rb is not phosphorylated and E2F mediated transcription is repressed
- Cdk2 and Cdk4 are essential genes, regulating the G1/S transition

Cdk2 and Cdk4 control the expression of Cdk1 through the Rb/E2F pathway
Mouse Models to Investigate Cell Cycle and Cancer
Prof. Philipp Kaldis

The p27kip1 network

- TGF\textbeta, Cell cycle exit (GO)
- Ubiquitin-mediated degradation

Eiman Aleem

\textit{Cdk2}-/-p27-/- double knockout mice

- Increased body size
- Smaller body size
- Female sterility, disordered estrus, impaired luteal cell differentiation
- Pituitary tumors
- Retinal dysplasia
- Thymic hyperplasia, increased T cell proliferation, hematopoietic progenitors
- MEFs: lower proliferation, 4h delay in S phase entry
- MEFs: normal cell cycle kinetics
Mouse Models to Investigate

Cell Cycle and Cancer

Prof. Philipp Kaldis

Cdk2⁻/-p27⁻/- mice

Ovary tumors in Cdk2⁻/-p27⁻/- mice

Pituitary tumors

The screen versions of these slides have full details of copyright and acknowledgements.
Mouse Models to Investigate
Cell Cycle and Cancer
Prof. Philipp Kaldis

Cdk1 binds to p27 and cyclin E

Proliferation of mouse embryonic fibroblasts

Silencing of Cdk1 in Cdk2−/− MEFs
Summary Cdk2⁻/⁻p27⁻/⁻
- P27 regulates Cdk2 and Cdk1
- Cdk1 interacts with cyclin E and forms active complexes
- Cdk1/cyclin E complexes most likely promote S phase and compensate for Cdk2

Cdk1 binds to p27 and cyclin E

<table>
<thead>
<tr>
<th>Wild type</th>
<th>S phase</th>
<th>G2</th>
<th>M phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cdk2</td>
<td>Cdk2</td>
<td></td>
<td>Cdk2</td>
</tr>
<tr>
<td>Cyclin E</td>
<td>Cyclin A</td>
<td></td>
<td>Cyclin B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cdk2⁻/⁻p27⁻/⁻</th>
<th>Cdk1</th>
<th>Cyclin E</th>
<th>Cyclin A</th>
<th>Cyclin A</th>
<th>Cyclin B</th>
</tr>
</thead>
</table>

Cdk1/cyclin E complexes can drive S phase

Cdk1 compensates for Cdk2 functions in S phase
Cdk1 translocates to the nucleus prematurely in the absence of Cdk2

Satya Ande

DNA damage response in Cdk2-/- knockout mice

Response to γ-irradiation in MEFs

The screen versions of these slides have full details of copyright and acknowledgements
Response to γ-irradiation in MEFs

In vivo response to γ-irradiation: partial hepatectomy model

Cdk2⁺/⁺ and Cdk2⁻/⁻ mice subjected to 70% partial hepatectomy (surgery)

In vivo response to γ-irradiation: molecular outcome
Cdk1 and p21 can interact because they co-localize.

Proliferation of MEFs after irradiation

Cdk2^{-/-} mice are sensitive to γ-irradiation.
Mouse Models to Investigate
Cell Cycle and Cancer
Prof. Philipp Kaldis

DNA damage in the absence of Cdk2
- Cdk2-/- mice are sensitive to γ-irradiation
- Cdk1 compensates for Cdk2 and is inhibited by p21
- DNA damage foci formation is disturbed
- DNA damage repair is delayed
- Cdk1 is less efficient in DNA damage repair

Acknowledgements
Kasim Diril
Shuhei Kotoshiba
Xinde Zheng
Stefan Lim
Shuhei Lim
Daniel Chew
June Wang
Lino Tessarollo
Vincenzo Coppola
Eileen Southon
Shyam Sharaz
Nancy Jenkins
Neal Copeland
Eiman Aseem
Cyril Berhet
Padmakumar VC
Wenmin Li
Satya Anse
Krisly McDowell
Mary Beth Hilton
Hiroaki Kiyokawa
Northwestern
Jonathan Keller
Kim Klamann
Hyung Chan Suh
Ben Asefa
John Gooya
Mouse Models to Investigate
Cell Cycle and Cancer
Prof. Philipp Kaldis

The screen versions of these slides have full details of copyright and acknowledgements